90 research outputs found

    A unified parameter identification method for nonlinear time-delay systems

    Get PDF
    This paper deals with the problem of identifying unknown time-delays and model parameters in a general nonlinear time-delay system. We propose a unified computational approach that involves solving a dynamic optimization problem, whose cost function measures the discrepancy between predicted and observed system output, to determine optimal values for the unknown quantities. Our main contribution is to show that the partial derivatives of this cost function can be computed by solving a set of auxiliary time-delay systems. On this basis, the parameter identification problem can be solved using existing gradient-based optimization techniques. We conclude the paper with two numerical simulations

    Data-Driven Modelling of the Inositol Trisphosphate Receptor (IPR) and its Role in Calcium-Induced Calcium Release (CICR)

    Get PDF
    We review the current state of the art of data-driven modelling of the inositol trisphosphate receptor (IPR). After explaining that the IPR plays a crucial role as a central regulator in calcium dynamics, several sources of relevant experimental data are introduced. Single ion channels are best studied by recording single-channel currents under different ligand concentrations via the patch-clamp technique. The particular relevance of modal gating, the spontaneous switching between different levels of channel activity that occur even at constant ligand concentrations, is highlighted. In order to investigate the interactions of IPRs, calcium release from small clusters of channels, so-called calcium puffs, can be used. We then present the mathematical framework common to all models based on single-channel data, aggregated continuous-time Markov models, and give a short review of statistical approaches for parameterising these models with experimental data. The process of building a Markov model that integrates various sources of experimental data is illustrated using two recent examples, the model by Ullah et al. and the “Park–Drive” model by Siekmann et al. (Biophys. J. 2012), the only models that account for all sources of data currently available. Finally, it is demonstrated that the essential features of the Park–Drive model in different models of calcium dynamics are preserved after reducing it to a two-state model that only accounts for the switching between the inactive “park” and the active “drive” modes. This highlights the fact that modal gating is the most important mechanism of ligand regulation in the IPR. It also emphasises that data-driven models of ion channels do not necessarily have to lead to detailed models but can be constructed so that relevant data is selected to represent ion channels at the appropriate level of complexity for a given application

    Balancing with Vibration: A Prelude for “Drift and Act” Balance Control

    Get PDF
    Stick balancing at the fingertip is a powerful paradigm for the study of the control of human balance. Here we show that the mean stick balancing time is increased by about two-fold when a subject stands on a vibrating platform that produces vertical vibrations at the fingertip (0.001 m, 15–50 Hz). High speed motion capture measurements in three dimensions demonstrate that vibration does not shorten the neural latency for stick balancing or change the distribution of the changes in speed made by the fingertip during stick balancing, but does decrease the amplitude of the fluctuations in the relative positions of the fingertip and the tip of the stick in the horizontal plane, A(x,y). The findings are interpreted in terms of a time-delayed “drift and act” control mechanism in which controlling movements are made only when controlled variables exceed a threshold, i.e. the stick survival time measures the time to cross a threshold. The amplitude of the oscillations produced by this mechanism can be decreased by parametric excitation. It is shown that a plot of the logarithm of the vibration-induced increase in stick balancing skill, a measure of the mean first passage time, versus the standard deviation of the A(x,y) fluctuations, a measure of the distance to the threshold, is linear as expected for the times to cross a threshold in a stochastic dynamical system. These observations suggest that the balanced state represents a complex time–dependent state which is situated in a basin of attraction that is of the same order of size. The fact that vibration amplitude can benefit balance control raises the possibility of minimizing risk of falling through appropriate changes in the design of footwear and roughness of the walking surfaces

    Transfer function and frequency response estimation using resonant filters

    No full text
    A resonant filter approach is proposed for direct identification of continuous-time transfer functions from input-output data when the input contains significant periodic components. The asymptotic properties of the method are analysed; in particular the noise reduction properties are emphasised. A simulation example is given to demonstrate the properties of the algorithm. By using a set of experimental data collected from a food cooking extruder, the proposed method has been compared to a well-known frequency response method

    Force as a flow variable

    No full text

    Innovative work behaviour in knowledge-intensive public sector organizations: the case of supervisors in the Netherlands fire services

    Get PDF
    Studying innovative employee behaviours within knowledge-intensive public sector organizations (KIPSOs) might seem an odd thing to do given the lack of competitive pressures, the limited identification of the costs and benefits of innovative ideas and the lack of opportunities to incentivize employees financially. Nevertheless, KIPSOs require innovations to ensure long-term survival. To help achieve this goal, this paper explores the role of supervisors in supporting innovative work behaviour (IWB) by considering the unique challenges of KIPSOs and the conditions and characteristics of IWB in this context. Based on our rich qualitative data of a single case study in the Netherlands Fire Services, we demonstrate the ability of public-sector supervisors to engage employees in innovative behaviours. On the downside, implementation failures and a lack of radical innovation projects seem to be the result of loosely coupled bottom-up and top-down innovation projects and decentralization in the KIPSO which requires situational leadership that emphasizes networking activities and lobbying with public managers
    • …
    corecore