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Abstract. This paper deals with the problem of identifying unknown time-

delays and model parameters in a general nonlinear time-delay system. We

propose a unified computational approach that involves solving a dynamic op-
timization problem, whose cost function measures the discrepancy between

predicted and observed system output, to determine optimal values for the un-

known quantities. Our main contribution is to show that the partial derivatives
of this cost function can be computed by solving a set of auxiliary time-delay

systems. On this basis, the parameter identification problem can be solved
using existing gradient-based optimization techniques. We conclude the paper

with two numerical simulations.

1. Introduction. Time-delay systems arise in many important applications, in-
cluding medicine [21], chromatography [24], aerospace engineering [5], and chemical
reactor control [9]. Time-delays are often the cause of unpredictable and unusual
system behavior. For example, it is known that the introduction of time-delays can
destabilize systems that would otherwise be uniformly asymptotically stable [4, 19].

If the time-delays in a system are fixed and known, then existing powerful optimal
control algorithms (e.g. the control parameterization method; see [3, 25]) can be
applied to compute an optimal control for the system. In many systems, however,
the time-delays are unknown, which renders most of the existing optimal control
algorithms unusable. In this case, the time-delays must first be estimated before
an optimal control algorithm is applied. The problem of estimating the time-delays
(and possibly other unknown system parameters) from a given set of experimental
data is one of the key problems in the study of time-delay systems [20]. Such
problems are known as parameter identification problems.

Parameter identification for time-delay systems has been the subject of vigorous
research activity over the last two decades. An exact least squares algorithm for the
estimation of a single input delay is reported in [8]. Algebraic techniques [2] and
the steepest descent algorithm [6] have also been proposed for the identification of
input delays. In [26], information theory is used to identify time-delays for systems
in which each nonlinear term contains at most one unknown delay. Furthermore,
in [18] a genetic algorithm is developed for identifying a single time-delay in a
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linear discrete-time system. Lyapunov function methods have also been used to
design delay estimators in [7]. One of the limitations of the existing identification
methods in [2, 6, 7, 8, 18, 26] is that they are mainly designed for systems with a
single input delay and no unknown parameters. Nonlinear systems with multiple
unknown delays are rarely considered in the literature.

In this paper, we consider a general nonlinear delay-differential system with un-
known time-delays and unknown system parameters. We formulate the problem of
identifying these unknown quantities as a nonlinear optimization problem in which
the cost function measures the least-squares error between predicted and observed
system output. This type of parameter identification problem was previously con-
sidered in [14] for systems in which each nonlinear component contains at most one
unknown delay and no unknown system parameters. However, in many real-world
systems, such as the purification process of zinc sulphate solution [22], the nonlinear
terms contain both delays and parameters that need to be identified. Our goal in
this paper is to extend the approach pioneered in [14] to these more complicated
systems. The key idea is to introduce a set of auxiliary delay-differential systems,
and then express the gradient of the least-squares cost function in terms of the so-
lution of these auxiliary systems. On this basis, numerical integration can be used
to solve the auxiliary systems, and thereby obtain the gradient of the cost function,
which is the main information needed to solve the parameter identification prob-
lem via numerical optimization techniques [16]. Based on this idea, we propose a
computational algorithm for identifying the unknown time-delays and system pa-
rameters in a general nonlinear system. We then demonstrate the effectiveness of
this algorithm on two nonlinear parameter identification problems, one being the
parameter identification problem for the zinc sulphate purification process.

2. Problem formulation. Consider the following nonlinear time-delay system:

ẋ(t) = f(t,x(t), x̃(t), ζ), t ∈ [0, T ], (1)

x(t) = φ(t), t ≤ 0, (2)

where T > 0 is a given terminal time; x(t) = [x1(t), . . . , xn(t)]> ∈ Rn is the state
vector ; x̃(t) = [x(t− τ1)>, . . . ,x(t− τm)>]> ∈ Rnm is the delayed state vector ; and
ζ = [ζ1, . . . , ζr]

> ∈ Rr is a vector of unknown system parameters. Furthermore,
f : R× Rn × Rnm × Rr → Rn and φ : R→ Rn are given functions.

The time-delays in (1)-(2) are unknown quantities that need to be determined.
We assume that the ith time-delay belongs to the interval [ai, bi], where ai and bi
are given constants such that 0 ≤ ai < bi. Hence, the unknown time-delays satisfy
the following bound constraints:

ai ≤ τi ≤ bi, i = 1, . . . ,m. (3)

Any vector τ = [τ1, . . . , τm]> ∈ Rm that satisfies (3) is called a candidate time-delay
vector. Let T denote the set of all such candidate time-delay vectors.

In addition to the time-delays, the system parameters in (1)-(2) are also unknown
quantities that need to be determined. We suppose that

cj ≤ ζj ≤ dj , j = 1, . . . , r, (4)

where cj and dj are given real numbers such that 0 ≤ cj < dj . Note that there is
no loss of generality in assuming that cj ≥ 0; if cj < 0, then we may replace ζj with
ζj + cj . Any vector ζ = [ζ1, . . . , ζr]

> ∈ Rr that satisfies (4) is called a candidate
parameter vector. Let Z denote the set of all such candidate parameter vectors.
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The output of system (1)-(2) is given by

y(t) = g(x(t), ζ), t ∈ [0, T ], (5)

where g : Rn × Rr → Rp is a given function.
We assume that the following conditions are satisfied.

Assumption 1. The given functions f and g are continuously differentiable, and
φ is twice continuously differentiable.

Assumption 2. There exists a real number L1 > 0 such that

|f(t,x, x̃, ζ)| ≤ L1(1 + |x|+ |x̃|+ |ζ|), (t,x, x̃, ζ) ∈ R× Rn × Rnm × Rr,
where | · | denotes the Euclidean norm.

On the basis of Assumptions 1 and 2, the dynamic system (1)-(2) admits a unique
solution corresponding to each pair (τ , ζ) ∈ T × Z [1]. We denote this solution by
x(·|τ , ζ). Substituting x(·|τ , ζ) into (5) gives y(·|τ , ζ), the predicted system output
corresponding to (τ , ζ) ∈ T × Z. More formally,

y(t|τ , ζ) = g(x(t|τ , ζ), ζ), t ∈ [0, T ]. (6)

Suppose that the output from system (1)-(2) has been measured experimentally at

times t = tl, l = 1, . . . , q, where each tl ∈ [0, T ]. Let ŷl ∈ Rp denote the measured
output at time t = tl. Then the problem of identifying the unknown time-delays
and system parameters can be formulated mathematically as follows.

Problem (P). Choose τ ∈ T and ζ ∈ Z to minimize the following cost function:

J(τ , ζ) =

q∑
l=1

∣∣y(tl|τ , ζ)− ŷl
∣∣2. (7)

Problem (P) is a nonlinear dynamic optimization problem whose decision vari-
ables are the delays and model parameters in system (1)-(2). Our aim is to select
optimal values for these delays and parameters so that the predicted system output
best fits the experimental data. Almost all of the existing optimization techniques
for time-delay systems are based on the assumption that the delays are fixed and
known (see, for example, [3, 12, 25]). Problem (P) is unique in that the delays
are not fixed, but are instead decision variables to be chosen optimally. The cost
function in Problem (P) is also highly non-standard, as it depends on the system’s
state at a set of discrete time points, not just at the terminal time. Such cost
functions have been considered in [13, 17] for non-delay systems, and in [22] for
systems with fixed delays. However, the computational techniques developed in
references [13, 17, 22] are not applicable to Problem (P) because the time-delays in
system (1)-(2) are variable.

3. Gradient computation. Problem (P) involves choosing a finite number of
decision variables to minimize the cost function (7). Thus, in principle, Problem (P)
can be viewed as a nonlinear programming problem. Standard algorithms for solving
nonlinear programming problems—for example, sequential quadratic programming
or interior-point methods [16]—typically require the gradient of the cost function,
which is difficult to determine in Problem (P) because the delays and parameters
influence (7) implicitly through the dynamic system (1)-(2). The aim of this section
is to develop an efficient computational method for computing the gradient of the
cost function in Problem (P). This method, which is inspired by our earlier work in
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[10, 11, 14, 15], can be integrated with a standard nonlinear programming algorithm
to solve Problem (P).

3.1. Preliminaries. Throughout this subsection, we assume that k ∈ {1, . . . ,m}
and (τ , ζ) ∈ T ×Z are arbitrary but fixed. For simplicity, we write x(t) instead of
x(t|τ , ζ), and xε(t) instead of x(t|τ + εek, ζ), where ek denotes the kth unit basis
vector in Rm.

Define

I = [ak − τk, bk − τk].

Note that I 6= ∅ and 0 ∈ I. Clearly,

ε ∈ I ⇐⇒ τ + εek ∈ T .

For each ε ∈ I, define

ϕε(t) = xε(t)− x(t), t ≤ T,

and

θε,i(t) = xε(t− τi − εδki)− x(t− τi), t ≤ T, i = 1, . . . ,m,

where δki denotes the Kronecker delta function. Furthermore, let

θε(t) = [(θε,1(t))>, . . . , (θε,m(t))>]> ∈ Rnm, t ≤ T.

Clearly,

θε,i(t) = ϕε(t− τi), t ≤ T, i 6= k, (8)

ϕε(t) = 0, t ≤ 0. (9)

In the sequel, we will use the notation ∂
∂x̃i to denote differentiation with respect to

the ith delayed state in x̃(t) (i.e. differentiation with respect to x(t− τi)).
Now, define

χ(t) =

{
φ̇(t), if t ≤ 0,

f(t,x(t), x̃(t), ζ), if t ∈ (0, T ].

We immediately see that, for almost all t ∈ (−∞, T ],

ẋ(t) = χ(t).

Let b̄ > 0 be a fixed constant such that b̄ ≥ bi for each i = 1, . . . ,m. By following
similar arguments to those used in [14], it is possible to show that there exists a
positive real number L2 > 0 such that for each ε ∈ I,

|xε(t)|, |χ(t)| ≤ L2, t ∈ [−b̄, T ], (10)

and

|ϕε(t)|, max
i=1,...,m

|θε,i(t)| ≤ L2|ε|, t ∈ [0, T ]. (11)

Furthermore, one can also show that for almost all t ∈ [0, T ],

lim
ε→0

θε,k(t)−ϕε(t− τk)

ε
= −χ(t− τk). (12)

See Appendix B of [14] for more details.
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3.2. State variation with respect to time-delays. The solution of system
(1)-(2) is normally viewed as a function of time, with τ and ζ being fixed vectors.
Now, by instead fixing t ∈ (−∞, T ], while allowing the vectors τ and ζ to vary,
we obtain a new function x(t|·, ·) : T × Z → Rn whose value at (τ , ζ) ∈ T × Z is
x(t|τ , ζ). In the following result, we show that x(t|·, ·) is differentiable with respect
to the time-delays. This result is central to the development of a computational
procedure for solving Problem (P).

Theorem 3.1. Let t ∈ (0, T ] be a fixed time point. Then x(t|·, ·) is differentiable
with respect to τk on T × Z. In fact, for each (τ , ζ) ∈ T × Z,

∂x(t|τ , ζ)

∂τk
= Λk(t|τ , ζ), k = 1, . . . ,m, (13)

where Λk(·|τ , ζ) satisfies the auxiliary time-delay system

Λ̇
k
(t) =

∂f(t,x(t), x̃(t), ζ)

∂x
Λk(t) +

m∑
i=1

∂f(t,x(t), x̃(t), ζ)

∂x̃i
Λk(t− τi)

− ∂f(t,x(t), x̃(t), ζ)

∂x̃k
χ(t− τk)

(14)

with initial condition

Λk(t) = 0, t ≤ 0. (15)

Proof. Let k ∈ {1, . . . ,m} and (τ , ζ) ∈ T × Z be arbitrary but fixed. As in
Subsection 3.1, we write xε(t) instead of x(t|τ+εek, ζ), and x(t) instead of x(t|τ , ζ).

For each ε ∈ I \ {0}, define

ρ(ε) =

∫ T

0

∣∣ε−1θε,k(s)− ε−1ϕε(s− τk) + χ(s− τk)
∣∣ds. (16)

It follows from (9), (10), and (11) that for each ε ∈ I \ {0},∣∣ε−1θε,k(s)− ε−1ϕε(s− τk) + χ(s− τk)
∣∣ ≤ 3L2, s ∈ [0, T ].

Hence, the integrand in (16) is uniformly bounded with respect to ε ∈ I \ {0}.
Furthermore, it follows from (12) that the integrand in (16) converges to zero almost
everywhere on [0, T ] as ε → 0. Thus, from the Lebesgue dominated convergence
theorem,

lim
ε→0

ρ(ε) = lim
ε→0

∫ T

0

∣∣ε−1θε,k(s)− ε−1ϕε(s− τk) + χ(s− τk)
∣∣ds = 0.

Now, keeping ε ∈ I \ {0} fixed for the time being, we define

f̄(s, α) = f(s,x(s) + αϕε(s), x̃(s) + αθε(s), ζ), (s, α) ∈ [0, T ]× [0, 1].

Then by the chain rule,

∂f̄(s, α)

∂α
=
∂f̄(s, α)

∂x
ϕε(s) +

m∑
i=1

∂f̄(s, α)

∂x̃i
θε,i(s), (17)

where

∂f̄(s, α)

∂x
=
∂f(s,x(s) + αϕε(s), x̃(s) + αθε(s), ζ)

∂x
, (18)

∂f̄(s, α)

∂x̃i
=
∂f(s,x(s) + αϕε(s), x̃(s) + αθε(s), ζ)

∂x̃i
. (19)
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We can rewrite (17) as follows:

∂f̄(s, α)

∂α
= ∆1(s, α) + ∆2(s, α) +

∂f̄(s, 0)

∂x
ϕε(s) +

m∑
i=1

∂f̄(s, 0)

∂x̃i
ϕε(s− τi)

+

m∑
i=1

∂f̄(s, 0)

∂x̃i
{
θε,i(s)−ϕε(s− τi)

}
,

where

∆1(s, α) =
{∂f̄(s, α)

∂x
− ∂f̄(s, 0)

∂x

}
ϕε(s), (20)

∆2(s, α) =

m∑
i=1

{∂f̄(s, α)

∂x̃i
− ∂f̄(s, 0)

∂x̃i

}
θε,i(s). (21)

Applying (8) gives

∂f̄(s, α)

∂α
= ∆1(s, α) + ∆2(s, α) +

∂f̄(s, 0)

∂x
ϕε(s)

+

m∑
i=1

∂f̄(s, 0)

∂x̃i
ϕε(s− τi) +

∂f̄(s, 0)

∂x̃k
{
θε,k(s)−ϕε(s− τk)

}
.

(22)

Now,

ϕε(t) = xε(t)− x(t) =

∫ t

0

{
f̄(s, 1)− f̄(s, 0)

}
ds.

Thus, by the fundamental theorem of calculus,

ϕε(t) =

∫ t

0

{
f̄(s, 1)− f̄(s, 0)

}
ds =

∫ t

0

∫ 1

0

∂f̄(s, α)

∂α
dαds. (23)

Substituting (22) into (23) yields

ϕε(t) =

∫ t

0

∫ 1

0

{
∆1(s, α) + ∆2(s, α)

}
dαds+

∫ t

0

∂f̄(s, 0)

∂x
ϕε(s)ds

+

∫ t

0

∂f̄(s, 0)

∂x̃k
{
θε,k(s)−ϕε(s− τk)

}
ds

+

m∑
i=1

∫ t

0

∂f̄(s, 0)

∂x̃i
ϕε(s− τi)ds.

(24)

Now, by using (18) and (19), we can write the auxiliary system (14) as follows:

Λ̇
k
(s) =

∂f̄(s, 0)

∂x
Λk(s) +

m∑
i=1

∂f̄(s, 0)

∂x̃i
Λk(s− τi)−

∂f̄(s, 0)

∂x̃k
χ(s− τk).

Hence,

Λk(t) =

∫ t

0

∂f̄(s, 0)

∂x
Λk(s)ds+

m∑
i=1

∫ t

0

∂f̄(s, 0)

∂x̃i
Λk(s− τi)ds

−
∫ t

0

∂f̄(s, 0)

∂x̃k
χ(s− τk)ds.

(25)

Now, since f is continuously differentiable (recall Assumption 1), and x is bounded
on [−b̄, T ] (recall inequality (10)), there exists constants M1 > 0 and M2 > 0 such
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that ∣∣∣∂f̄(s, 0)

∂x

∣∣∣ ≤M1,
∣∣∣∂f̄(s, 0)

∂x̃i

∣∣∣ ≤M2, s ∈ [0, T ],

where | · | denotes the natural matrix norm on Rn×n. Thus, from (24) and (25),∣∣ε−1ϕε(t)−Λk(t)
∣∣ ≤M2ρ(ε) +

∫ t

0

M1

∣∣ε−1ϕε(s)−Λk(s)
∣∣ds

+

m∑
i=1

∫ t

0

M2

∣∣ε−1ϕε(s− τi)−Λk(s− τi)
∣∣ds

+ |ε|−1

∫ t

0

∫ 1

0

{
|∆1(s, α)|+ |∆2(s, α)|

}
dαds,

(26)

where ρ(ε) is as defined in (16). The second integral term on the right-hand side of
(26) can be simplified as follows:

m∑
i=1

∫ t

0

M2

∣∣ε−1ϕε(s− τi)−Λk(s− τi)
∣∣ds =

m∑
i=1

∫ t−τi

−τi
M2

∣∣ε−1ϕε(s)−Λk(s)
∣∣ds

≤
m∑
i=1

∫ t

0

M2

∣∣ε−1ϕε(s)−Λk(s)
∣∣ds

=

∫ t

0

mM2

∣∣ε−1ϕε(s)−Λk(s)
∣∣ds.

Hence, (26) becomes∣∣ε−1ϕε(t)−Λk(t)
∣∣ ≤M2ρ(ε) +

∫ t

0

M̄
∣∣ε−1ϕε(s)−Λk(s)

∣∣ds
+ |ε|−1

∫ t

0

∫ 1

0

{
|∆1(s, α)|+ |∆2(s, α)|

}
dαds,

(27)

where M̄ = M1 +mM2. Since f is continuously differentiable and xε is uniformly

bounded with respect to ε, ∂f̄
∂x and ∂f̄

∂x̃i are uniformly continuous on [0, T ] × [0, 1].
Furthermore, by (11), x(s) + αϕε(s) → x(s) and x̃(s) + αθε(s) → x̃(s) uniformly
on [0, T ]× [0, 1] as ε→ 0. Thus, for each δ > 0, there exists an ε′ > 0 such that for
all ε satisfying |ε| < ε′,∣∣∣∂f̄(s, α)

∂x
− ∂f̄(s, 0)

∂x

∣∣∣ < δ, (s, α) ∈ [0, T ]× [0, 1],∣∣∣∂f̄(s, α)

∂x̃i
− ∂f̄(s, 0)

∂x̃i

∣∣∣ < δ, (s, α) ∈ [0, T ]× [0, 1].

By taking the norm of (20) and (21), and then using the above inequalities together
with (11), we obtain

|∆1(s, α)| ≤ δL2|ε|, |∆2(s, α)| ≤ δmL2|ε|, (28)

where |ε| < ε′. Substituting these inequalities into (27) yields,∣∣ε−1ϕε(t)−Λk(t)
∣∣ ≤M2ρ(ε) + (L2T +mL2T )δ +

∫ t

0

M̄
∣∣ε−1ϕε(s)−Λk(s)

∣∣ds.
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Now, recall that ρ(ε)→ 0 as ε→ 0. Hence, there exists an ε′′ > 0 such that ρ(ε) < δ
whenever |ε| < ε′′. Thus, for all ε such that |ε| < min{ε′, ε′′},∣∣ε−1ϕε(t)−Λk(t)

∣∣ ≤M2δ + (L2T +mL2T )δ +

∫ t

0

M̄
∣∣ε−1ϕε(s)−Λk(s)

∣∣ds.
Applying the Gronwall-Bellman Lemma [1] gives∣∣ε−1ϕε(t)−Λk(t)

∣∣ ≤ δ(M2 + L2T +mL2T ) exp{M̄T},

where |ε| < min{ε′, ε′′}. Since δ is arbitrary, this shows that ε−1ϕε(t) → Λk(t) as
ε→ 0. It follows that

∂x(t|τ , ζ)

∂τk
= lim
ε→0

xε(t)− x(t)

ε
= lim
ε→0

ε−1ϕε(t) = Λk(t),

as required.

In Theorem 3.1, we derived formulae for the gradient of the state with respect
to the time-delays. In the next subsection, we turn our attention to the gradient of
the state with respect to the system parameters.

3.3. State variation with respect to system parameters. Let w be a new
state variable with dynamics

ẇ(t) = 1, t ∈ [0, T ], (29)

w(t) = t, t ≤ 0. (30)

Clearly, w(t) = t for all t ∈ (−∞, T ]. Thus, we can express the system parameters
in (1)-(2) in terms of the new state variable w as follows:

ζj = t− w(t− ζj), j = 1, . . . , r. (31)

Substituting (31) into the original system (1)-(2) gives

ẋ(t) = f(t,x(t), x̃(t), t− w(t− ζ1), . . . , t− w(t− ζr)), t ∈ [0, T ], (32)

x(t) = φ(t), t ≤ 0. (33)

The system parameters ζj , j = 1, . . . , r, are now time-delays in the enlarged sys-
tem consisting of (29)-(30) and (32)-(33). Thus, to determine the state variation
with respect to the system parameters in system (1)-(2), we just need to apply
Theorem 3.1 to the enlarged system consisting of (29)-(30) and (32)-(33). It is
important to note that each system parameter is bounded below by zero (see the
problem formulation in Section 2). Thus, the enlarged system considered here is a
valid time-delay system with all time-delays non-negative.

Let z(t) ∈ Rn+1 and z̃(t) ∈ R(n+1)(m+r) denote, respectively, the state and
delayed state vectors for the enlarged system, where

z(t) =
[
x1(t), . . . , xn(t), w(t)

]>
and

z̃(t) =
[
z(t− τ1), . . . ,z(t− τm), z(t− ζ1), . . . ,z(t− ζr)

]>
.

The enlarged system consisting of (29)-(30) and (32)-(33) can be written as follows:

ż(t) = f̂(t, z(t), z̃(t)), t ∈ [0, T ], (34)

z(t) = φ̂(t), t ≤ 0, (35)
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where

f̂(t, z(t), z̃(t)) =

[
f(t,x(t), x̃(t), t− w(t− ζ1), . . . , t− w(t− ζr))

1

]
and

φ̂(t) =

[
φ(t)
t

]
.

Define

χ̂(t) =

{
˙̂
φ(t), if t ≤ 0,

f̂(t, z(t), z̃(t)), if t ∈ (0, T ].

Let j ∈ {1, . . . , r} and (τ , ζ) ∈ T × Z. Then the auxiliary system for (34)-(35)
corresponding to the system parameter ζj is[

Γ̇
j
(t)

γ̇j(t)

]
=
∂f̂(t, z(t), z̃(t))

∂z

[
Γj(t)
γj(t)

]
+

m∑
i=1

∂f̂(t, z(t), z̃(t))

∂z̃i

[
Γj(t− τi)
γj(t− τi)

]

+

r∑
i=1

∂f̂(t, z(t), z̃(t))

∂z̃m+i

[
Γj(t− ζi)
γj(t− ζi)

]
− ∂f̂(t, z(t), z̃(t))

∂z̃m+j
χ̂(t− ζj)

(36)

with the initial conditions [
Γj(t)
γj(t)

]
=

[
0
0

]
, t ≤ 0. (37)

Here, Γj(t) : (−∞, T ]→ Rn is the variation of the original state x with respect to
ζj and γj(t) : (−∞, T ]→ Rn is the variation of the new state w with respect to ζj .
Note that

∂f̂(t, z(t), z̃(t))

∂z
=

[
∂f(t,x(t),x̃(t),ζ)

∂x 0
0 0

]
,

∂f̂(t, z(t), z̃(t))

∂z̃i
=

[
∂f(t,x(t),x̃(t),ζ)

∂x̃i 0
0 0

]
, i = 1, . . . ,m,

∂f̂(t, z(t), z̃(t))

∂z̃m+i
=

[
0 −∂f(t,x(t),x̃(t),ζ)

∂ζi

0 0

]
, i = 1, . . . , r.

Furthermore, it is clear that γj(t) = 0 for all t ∈ (−∞, T ]. Thus, the auxiliary
system (36)-(37) becomes

Γ̇
j
(t) =

∂f(t,x(t), x̃(t), ζ)

∂x
Γj(t) +

m∑
i=1

∂f(t,x(t), x̃(t), ζ)

∂x̃i
Γj(t− τi)

+
∂f(t,x(t), x̃(t), ζ)

∂ζj

(38)

with initial conditions

Γj(t) = 0, t ≤ 0. (39)

Applying Theorem 3.1 to the enlarged system consisting of (29)-(30) and (32)-(33)
yields the following result.
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Theorem 3.2. Let t ∈ (0, T ] be a fixed time point. Then x(t|·, ·) is differentiable
with respect to ζj on T × Z. In fact, for each (τ , ζ) ∈ T × Z,

∂x(t|τ , ζ)

∂ζj
= Γj(t|τ , ζ), j = 1, . . . , r,

where Γj(·|τ , ζ) satisfies the auxiliary time-delay system (38)-(39).

We are now ready to derive formulae for the gradient of the cost function in
Problem (P). By using Theorems 3.1 and 3.2 and the chain rule of differentiation,
we obtain

∂J(τ , ζ)

∂τk
= 2

q∑
l=1

[
y(tl|τ , ζ)− ŷl

]> ∂g(x(tl|τ , ζ), ζ)

∂x
Λk(tl|τ , ζ), (40)

and

∂J(τ , ζ)

∂ζj
= 2

q∑
l=1

[
y(tl|τ , ζ)− ŷl

]> ∂g(x(tl|τ , ζ), ζ)

∂x
Γj(tl|τ , ζ)

+ 2

q∑
l=1

[
y(tl|τ , ζ)− ŷl

]> ∂g(x(tl|τ , ζ), ζ)

∂ζj
.

(41)

We now present the following algorithm for computing the cost function (7) and its
gradient at a given pair (τ , ζ) ∈ T × Z.

Step 1. Obtain x(·|τ , ζ), Λk(·|τ , ζ), k = 1, . . . ,m, and Γj(·|τ , ζ), j = 1, . . . , r, by
solving the enlarged time-delay system consisting of the original system (1)-(2)
and the auxiliary systems (14)-(15) and (38)-(39).

Step 2. Use the state values x(tl|τ , ζ), l = 1, . . . , q, to compute y(tl|τ , ζ) through
equation (6).

Step 3. Use y(tl|τ , ζ), l = 1, . . . , q, to compute J(τ , ζ) through equation (7).

Step 4. Use x(tl|τ , ζ), y(tl|τ , ζ), Λk(tl|τ , ζ), and Γj(tl|τ , ζ) to compute ∂J(τ ,ζ)
∂τk

,

k = 1, . . . ,m, and ∂J(τ ,ζ)
∂ζj

, j = 1, . . . , r, through equations (40) and (41).

This gradient computation algorithm can be integrated with a standard gradient-
based optimization method (e.g. sequential quadratic programming (SQP)) to solve
Problem (P) as a nonlinear programming problem. Note that gradient-based opti-
mization methods such as SQP are only guaranteed to converge to a locally optimal
solution. Thus, when applied to Problem (P), these methods could potentially gen-
erate parameter estimates that are not globally optimal. However, this is unlikely
for two reasons. First, in a practical identification problem, we usually have rea-
sonably tight bounds and good initial approximations for the unknown delays and
parameters. Second, the number of unknown delays and parameters is usually small
(models with more than 2 or 3 delays are rare). Thus, global optimization is usually
not a major issue for identification problems.

In some applications, the governing dynamic system includes input-delays as well
as state-delays. For example, consider the following system:

ẋ(t) = f(t,x(t), x̃(t),u(t), ũ(t), ζ), t ∈ [0, T ], (42)

x(t) = φ(t), t ≤ 0, (43)

where u(t) = [u1(t), . . . , uv(t)]
> ∈ Rv is the control input vector for the system;

ũ(t) = [u(t − λ1)>, . . . ,u(t − λd)
>]> ∈ Rvd is the delayed control vector ; and
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λi, i = 1, . . . , d, are unknown control delays. The other symbols are as defined in
Section 2.

In (42)-(43), ũ is assumed to be a known input function. Thus, we can write
(42)-(43) in the form of (1)-(2) as follows:

ẋ(t) = f̄(t,x(t), x̃(t), ζ,λ), t ∈ [0, T ], (44)

where λ = [λ1, . . . , λd]
> is a parameter vector containing the control delays. If the

input function u is continuously differentiable, then f̄ is also continuously differen-
tiable, and thus the approach outlined above for solving Problem (P) is applicable.
Hence, our identification method can also be applied to systems with input delay
(assuming that the input is smooth).

4. Numerical examples.

4.1. Example 1. We now apply the solution method developed in Section 3 to the
industrial purification process described in [22, 23]. The purpose of this process
is to remove harmful cobalt and cadmium ions from a zinc sulphate electrolyte by
adding zinc powder to encourage deposition. This is a key step in the production
of zinc.

The changes in concentrations of cobalt and cadmium ions in the electrolyte are
described by the following differential equations:

V ẋ1(t) = Qx0
1 −Qx1(t− τ)− αu(t)x1(t− τ) + cx2(t− τ), (45)

V ẋ2(t) = Qx0
2 −Qx2(t− τ)− βv(t)x2(t− τ) + dx1(t− τ), (46)

and

x1(t) = 3.3× 10−4, x2(t) = 4.0× 10−3 t ≤ 0, (47)

where x1 is the concentration of cobalt ions; x2 is the concentration of cadmium
ions; and u and v are control variables representing the zinc powder reaction surface
areas (which correspond to the level of zinc powder added to the reaction tank).

Furthermore, V is the volume of the reaction tank (V = 400); Q is the flux of
solution (Q = 200); α, β, c, d, are model parameters; and x0

1 and x0
2 are the concen-

trations of cobalt and cadmium ions at the inlet of the reaction tank, respectively
(x0

1 = 6×10−4, x0
2 = 9×10−3). Reference [23] considers the parameter identification

problem for system (45)-(47) with a given time-delay of τ = 2. Here, we consider
the problem of identifying the time-delay. We assume that β, c, and d are equal to
the optimal values reported in [23]:

β = 2.823× 10−4, c = 16.67, d = 7.107× 102. (48)

These values were obtained using data from a real zinc production factory in China.
We assume that the terminal time is T = 8. We set the input variables u and v as
equal to the optimal control functions obtained in [23]:

u(t) =

8∑
k=1

σkψ[t̄k−1,t̄k)(t), t ∈ [0, 8], (49)

v(t) =

8∑
k=1

σ̄kψ[t̄k−1,t̄k)(t), t ∈ [0, 8], (50)
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Table 1. Control values and switching times for Example 1.

k 1 2 3 4 5 6 7 8

t̄k 1 2 3 4 5 6 7 8
σk × 10−5 1.08 1.57 1.24 1.56 1.59 1.43 1.25 1.25
σ̄k × 10−5 5.20 4.70 4.97 4.60 4.53 4.64 4.74 4.62

where the values of t̄k, σk, and σ̄k, k = 1, . . . , 8, are listed in Table 1, and

ψ[t̄k−1,t̄k)(t) =

{
1, if t ∈ [t̄k−1, t̄k),

0, otherwise.

The output of the system is the concentration of cadmium ions:

y(t) = x2(t). (51)

Given system (45)-(47) and (51), with data (48)-(50), our goal is to identify the
model parameter α and the delay τ .

We simulate system (45)-(47) with τ = τ̂ = 2 and α = α̂ = 7.828 × 10−4

to generate the observed data in Problem (P). The sample times are tl = l/2,
l = 1, . . . , 16, and the observed output is

ŷl = x2(tl|τ̂ , α̂).

Our identification problem is: choose τ and α to minimize

J(τ, α) =

16∑
l=1

∣∣y(tl|τ, α)− ŷl
∣∣2 =

16∑
l=1

∣∣x2(tl|τ, α)− x2(tl|τ̂ , α̂)
∣∣2

subject to the dynamic system (45)-(47).
Note that this problem cannot be solved using the identification method in [14],

as the third term on the right-hand side of (45) contains both an unknown parameter
and an unknown delay. The method in [14] is only applicable when each nonlinear
term contains a single delay and no unknown parameters. We instead solve this
problem using a Matlab program that integrates the SQP optimization method
with the gradient computation algorithm described in Section 3.

Computational results for different initial guesses are shown in Table 2. The
convergence of the output trajectory for the initial guess τ = 3 and α = 0 is
displayed in Figure 1. This figure shows the output trajectory at intermediate
iterations of the optimization process, as well as the final (converged) trajectory.
In Table 2 and Figure 1, τ i and αi are the values of τ and α at the ith iteration
of the optimization process (i = 0 refers to the initial guess). We see from Table 2
and Figure 1 that the optimal trajectory converges quickly to the observed data,
regardless of the initial guess. Thus, the algorithm easily recovers the true values
of the delay and parameter for this problem.

For comparison, we also solve this problem using the genetic algorithm (GA)
in [18]. The parameters of GA are: the size of population is 20, the crossover
probability is 0.8, the selection rate is 0.9, the mutation probability is 0.01, the
number of bits for each individual is 14, and the maximum number of iterations is
1000. It takes about 40 minutes for GA to solve this problem, which is more than
20 times longer than the computation time taken by our method. Moreover, the
cost value obtained by GA is 1.3787×10−9 with corresponding parameter estimates
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Table 2. Numerical convergence of the cost values in Example 1.

Initial guess Cost value at ith iteration

No. τ0 α0 i = 0 i = 5 i = 10 i = 70

1 0.5 0.5 9.111×1033 5.392×10−6 5.157×10−9 7.751×10−15

2 1.0 1.0 4.558×1020 5.106×10−6 7.709×10−10 1.088×10−13

3 1.5 0.5 3.346×1010 1.722×10−6 1.496×10−6 1.700×10−13

4 3.0 0.0 7.094×10−5 2.536×10−5 2.209×10−5 3.341×10−14

5 3.0 1.0 8.533×103 2.589×10−5 2.180×10−5 2.050×10−14

τ = 2.0026 and α = 7.9351×10−4. Clearly, the results obtained by our new method
are better than those from GA. This is not surprising, as our method exploits the
gradient of the cost function to achieve fast convergence.
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τ5=2.974;    α5=1.602× 10−3

τ10=2.821;  α10=1.020× 10−3

τ70=2.000;  α70=7.828× 10−4

τ0=3.0;       α0=0.0

observed data

Figure 1. Numerical convergence of the output trajectory in Ex-
ample 1 for initial guess No.4.

4.2. Example 2. We now demonstrate the applicability of our approach to systems
with multiple delays. Consider the dynamic system given below:

ẋ1(t) = −2x1(t) + 0.1(1− x1(t− τ1)) exp

{
20x2(t)

20 + x2(t)

}
+ 0.1x1(t− τ1)x2(t− τ2) + u(t− τ3),

(52)

ẋ2(t) = −2.5x2(t) + 0.8(1− x1(t− τ1)) exp

{
20x2(t)

20 + x2(t)

}
+ 0.1x2(t− τ1)x2(t− τ2) + u(t− τ3),

(53)

with initial condition

x1(t) = 1, x2(t) = 1, t ≤ 0. (54)

Here, τ1 and τ2 are unknown state-delays, and τ3 is an unknown input delay. Assume
that the terminal time of this system is T = 10. The input function is defined as
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follows:

u(t) = 0.1 sin(t), t ≤ 10.

Furthermore, the output is

y(t) = x2(t), t ≤ 10.

We use the output trajectory of (52)-(54) with [τ̂1, τ̂2, τ̂3] = [2.4, 1.8, 1.1]> to gener-
ate the observed data for Problem (P). We set

ŷl = x2(tl|τ̂1, τ̂2, τ̂3), l = 1, . . . , 20,

where tl = l/2. Thus, our identification problem is: choose τ1, τ2, and τ3 to minimize

J(τ ) =
20∑
l=1

∣∣y(tl|τ1, τ2, τ3)− ŷl
∣∣2 =

20∑
l=1

∣∣x2(tl|τ1, τ2, τ3)− x2(tl|τ̂1, τ̂2, τ̂3)
∣∣2

subject to the dynamics (52)-(54).
We solved this problem using the same Matlab program that was used to solve

Example 1. The convergence progress of our program is shown in Table 3 for four
sets of initial guesses. The convergence of the output trajectory for the initial guess
τ 0 = [3.0, 3.0, 3.0]> is shown in Figure 2. In Table 3 and Figure 2, τ i = [τ i1, τ

i
2, τ

i
3]>

is the value of τ at the ith iteration, while i = 0 refers to the initial guess. We
also solve this problem using GA with the same parameters as in Example 1. The
optimal cost obtained by GA is 1.3×10−4. Moreover, the computation time is much
longer than our new method. As with Example 1, we see that the optimization
process converges from all initial guesses to the optimal solution.

Table 3. Numerical convergence of the cost values in Example 2.

Initial guess Cost value at ith iteration

No. τ0
1 τ0

2 τ0
3 i = 0 i = 5 i = 10 i = 30

1 0.5 0.5 0.5 0.4922 0.0188 5.667×10−3 6.661×10−15

2 1.5 1.5 1.5 0.1386 0.0035 3.357×10−6 6.618×10−15

3 2.5 2.5 2.5 0.0747 0.0083 4.405×10−4 1.534×10−14

4 3.0 3.0 3.0 0.1710 0.0298 2.780×10−3 6.656×10−15

5. Conclusion. In this paper, we have developed a gradient-based computational
method for determining unknown time-delays and unknown parameters in a general
nonlinear system. This method is unified in the sense that the delays and param-
eters are determined simultaneously by solving a dynamic optimization problem.
The gradient of the cost function in this problem is obtained by solving a set of
auxiliary delay-differential systems from t = 0 to t = T . The numerical simulations
in Section 4 demonstrate that this approach is highly effective. In particular, it
converges quickly even when the initial estimates for the delays and parameters are
far away from the optimal values. Our future research will involve extending this
technique to adaptively identify delays and parameters as further information about
the system becomes available.
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Figure 2. Numerical convergence of the output trajectory in Ex-
ample 2 for initial guess No.4.
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