662 research outputs found

    An approximate threshold condition for a non-autonomous system: an application to a vector-borne infection

    Full text link
    A non-autonomous system is proposed to model the seasonal pattern of dengue fever. We found that an approximate threshold condition for infection persistence describes all possible behavior of the system. As far as we know, the kind of analysis here proposed is entirely new. No precise mathematical theorems are demonstrated but we give enough numerical evidence to support the conclusions.Comment: 11 pages and 6 figure

    Proteomics-based investigation in C2C12 myoblast differentiation

    Get PDF
    Skeletal muscle cell differentiation is a multistage process extensively studied over the years. Even if great improvements have been achieved in defining biological process underlying myogenesis, many molecular mechanisms need still to be clarified

    Estimation of Tidal Volume during Exercise Stress Test from Wearable-Device Measures of Heart Rate and Breathing Rate

    Get PDF
    Tidal volume (TV), defined as the amount of air that moves in or out of the lungs with each respiratory cycle, is important in evaluating the respiratory function. Although TV can be reliably measured in laboratory settings, this information is hardly obtainable under everyday living conditions. Under such conditions, wearable devices could provide valuable support to monitor vital signs, such as heart rate (HR) and breathing rate (BR). The aim of this study was to develop a model to estimate TV from wearable-device measures of HR and BR during exercise. HR and BR were acquired through the Zephyr Bioharness 3.0 wearable device in nine subjects performing incremental cycling tests. For each subject, TV during exercise was obtained with a metabolic cart (Cosmed). A stepwise regression algorithm was used to create the model using as possible predictors HR, BR, age, and body mass index; the model was then validated using a leave-one-subject-out cross-validation procedure. The performance of the model was evaluated using the explained variance (R-2), obtaining values ranging from 0.65 to 0.72. The proposed model is a valid method for TV estimation with wearable devices and can be considered not subject-specific and not instrumentation-specific

    Modeling the risk of malaria for travelers to areas with stable malaria transmission

    Get PDF
    BACKGROUND: Malaria is an important threat to travelers visiting endemic regions. The risk of acquiring malaria is complex and a number of factors including transmission intensity, duration of exposure, season of the year and use of chemoprophylaxis have to be taken into account estimating risk. MATERIALS AND METHODS: A mathematical model was developed to estimate the risk of non-immune individual acquiring falciparum malaria when traveling to the Amazon region of Brazil. The risk of malaria infection to travelers was calculated as a function of duration of exposure and season of arrival. RESULTS: The results suggest significant variation of risk for non-immune travelers depending on arrival season, duration of the visit and transmission intensity. The calculated risk for visitors staying longer than 4 months during peak transmission was 0.5% per visit. CONCLUSIONS: Risk estimates based on mathematical modeling based on accurate data can be a valuable tool in assessing risk/benefits and cost/benefits when deciding on the value of interventions for travelers to malaria endemic regions

    Initial investigation of athletes’ electrocardiograms acquired by wearable sensors during the pre-exercise phase

    Get PDF
    Aim: The aim of this study is to support large-scale prevention programs fighting sport-related sudden cardiac death by providing a set of electrocardiographic features representing a starting point in the development of normal reference values for the pre-exercise phase. Background: In people with underlying, often unknown, cardiovascular abnormalities, increased cardiovascular load during exercise can trigger sport-related sudden cardiac death. Prevention remains the only weapon to contrast sport-related sudden cardiac death. So far, no reference values have been proposed for electrocardiograms of athletes acquired with wearable sensors in the pre-exercise phase, consisting of the few minutes immediately before the beginning of the training session. Objective: To perform an initial investigation of athletes’ electrocardiograms acquired by wearable sensors during the pre-exercise phase. Methods: The analyzed electrocardiograms, acquired through BioHarness 3.0 by Zephyr, belong to 51 athletes (Sport Database and Cycling Database of the Cardiovascular Bioengineering Lab of the Università Politecnica delle Marche, Italy). Preliminary values consist of interquartile ranges of six electrocardiographic features which are heart rate, heart-rate variability, QRS duration, ST level, QT interval, and corrected QT interval. Results: For athletes 35 years old or younger, preliminary values were [72;91]bpm, [26;47]ms, [85;104]ms, [-0.08;0.08]mm, [326;364]ms and [378;422]ms, respectively. For athletes older than 35 years old, preliminary values were [71;94]bpm, [16;65]ms, [85;100]ms, [-0.11;0.07]mm, [330;368]ms and [394;414]ms, respectively. Conclusion: Availability of preliminary reference values could help identify those athletes who, due to electrocardiographic features out of normal ranges, are more likely to develop cardiac complications that may lead to sport-related sudden cardiac death
    corecore