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Abstract: Tidal volume (TV), defined as the amount of air that moves in or out of the lungs with
each respiratory cycle, is important in evaluating the respiratory function. Although TV can be
reliably measured in laboratory settings, this information is hardly obtainable under everyday living
conditions. Under such conditions, wearable devices could provide valuable support to monitor vital
signs, such as heart rate (HR) and breathing rate (BR). The aim of this study was to develop a model
to estimate TV from wearable-device measures of HR and BR during exercise. HR and BR were
acquired through the Zephyr Bioharness 3.0 wearable device in nine subjects performing incremental
cycling tests. For each subject, TV during exercise was obtained with a metabolic cart (Cosmed). A
stepwise regression algorithm was used to create the model using as possible predictors HR, BR, age,
and body mass index; the model was then validated using a leave-one-subject-out cross-validation
procedure. The performance of the model was evaluated using the explained variance (R?), obtaining
values ranging from 0.65 to 0.72. The proposed model is a valid method for TV estimation with
wearable devices and can be considered not subject-specific and not instrumentation-specific.

Keywords: respiratory function; respiratory frequency; heart rate; indirect estimation; regression
model; incremental test

1. Introduction

Tidal volume is defined as the amount of air that moves in or out of the lungs with each
respiratory cycle [1]. Changes in tidal volume may reveal pathologies such as restrictive
or obstructive lung diseases, acute respiratory distress syndrome, and diseases affecting
the respiratory muscles [1]. Of note, the information provided by tidal volume may
not be replaced by breathing rate [2,3]. Indeed, tidal volume and breathing rate are
differentially regulated, with the regulation of tidal volume being mainly mediated by
metabolic inputs [2,3]. The existence of an unbalanced interdependence between tidal
volume and breathing rate has also been suggested, in which tidal volume continuously
adjusts on the basis of breathing rate, but not vice versa [4]. For these reasons, tidal volume
represents an important variable for the evaluation of the respiratory function, and its
continuous monitoring may have clinical implications [5,6].

Traditional methodologies for the measure of tidal volume rely on spirometry and
optoelectronic plethysmography, both requiring a laboratory setting. Spirometry consists
in the measurement of the air flow produced during the respiration, when the subject is
asked to breath into a mask; thus, it is objective, noninvasive, sensitive to early change,
and reproducible [7,8]. On the contrary, optoelectronic plethysmography consists of a
motion analysis system which measures the changes in the chest wall during breathing by
modelling the thoraco-abdominal surface [9,10].
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However, as recently reviewed [11], in the last decade attempts have been made to
estimate tidal volume also outside the laboratory settings during either static (e.g., sit-
ting, standing, or lying) or dynamic tasks (e.g., during exercise), with the latter generally
providing higher estimation errors. Different wearable technologies have been exploited,
including various stretch sensors (optical, resistive, inductive, and pressure/tactile) [12-15]
or acoustic sensors that use the movements of the chest wall or the sound generated by air
flow during breathing [16], respectively; in other cases, the estimation of tidal volume was
indirectly achieved from the electrocardiogram (ECG) by extracting from it features such
as the breathing rate, ECG-derived respiration, and the heart-rate variability [17,18]. As
for these latter methodologies, multiple regression models were created using the features
extracted from the ECG acquired using a Holter monitor [18] or an armband device [17] as
predictors. In the first case, the estimation was performed during an exercise stress test,
whereas in the second during a lab-controlled experiment. To the best of our knowledge,
no study has provided an estimation of tidal volume from features such as heart rate and
breathing rate directly acquired from a commercially available wearable device during
an exercise stress test. This study aims to fill this gap by proposing a multiple regression
model based on these features.

2. Materials and Methods
2.1. Subjects

The data belong to nine male, healthy, adult, and physically active volunteers recruited
at the University of Rome “Foro Italico”. The characteristics of each volunteer are reported
in Table 1. All volunteers provided written informed consent for the study. The investiga-
tion was conducted in accordance with the Declaration of Helsinki, and ethical approval
was provided by the respective local ethical committee.

Table 1. Characteristics of the volunteers.

Age Height Weight BMI BSA

(years) (cm) (kg) (kg/m?) (m?)

1 42 170 69.9 24.2 1.81
2 51 180 81.0 25.0 2.01
3 52 184 75.0 22.0 1.97
4 45 176 72.8 23.5 1.86
5 53 180 73.5 22.7 1.93
6 46 171 65.2 22.3 1.76
7 27 175 64.2 21.0 1.78
8 26 169 68.8 241 1.79
9 40 179 77.2 241 1.96

All 42 +10 176 =5 78.0 £4.2 227 +£2.1 1.87 £ 0.09

BMI: body mass index (kg/m?); BSA: body surface area (m?). Data of all subjects are reported as mean = standard
deviation.

2.2. Experimental Setting

Each subject was asked to exercise on a cycle ergometer, starting from an initial power
output of 20 W, followed by a continuous ramped increase in power output of 30 W-min~!
up to 380 W. Each subject was equipped with a wearable device (BioHarness 3.0 by Zephyr,
Annapolis, MD, USA) [19,20] used to record the heart rate (HRwp) and the breathing rate
(BRwp) with sampling frequency of 1 Hz. Moreover, each subject was also equipped with a
metabolic cart (Quark CPET by Cosmed, Rome, Italy), a type of spirometer which is able to
measure the oxygen consumption and carbon dioxide production.

This system was used to record breath-by-breath tidal volume (TV), heart rate (HRRgr),
and breathing rate (BRrgr), which served as reference instrumentation.
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TVwb = 0.30-Age + 0.39-BMI — 0.02-HRyp + 0.17-BRyp — 0.12-Age-HRyp — 0.46-Age-BRyp
+ 0.20-BMI-HRyp — 4.80 -BMI-BRyp — 0.35-HRyp-BRwp — 11.46

2.3. Pre-Processing

Since breath-by-breath and wearable-device data had a different starting time of
acquisition, wearable-device data were aligned with breath-by-breath data in order to have
simultaneous series for HRwp, BRwp, TV, HRggg, and BRggg. Then, the data were filtered
for errant breaths (i.e., values resulting from sighs, swallows, coughs, etc.). Specifically, a 20-
sample moving window was considered and characterized using percentile computation.
Samples with values greater than the 95th percentile or lower than the 25th percentile were
considered outliers, and thus discarded.

2.4. Model Formulation

The model for the prediction of the tidal volume from wearable-device data (m))
was formulated using a stepwise regression approach, which allows for the creation of
a data-driven model by automatically selecting the set of most significant predictors.
Wearable-device data (HRwp and BRyp) were used as predictors, together with age and
BMIL. A multiple linear regression model with interactions was hypothesized:

—— 4 4 4
TVWD: o+ Zizl Bi'Fi + ZiZl 2] =1 YI,]FIF] (1)
i
where &, 3, and vy are the model parameters and F is the four predictors (age, BMI, HRwp,
or BRWD)

2.5. Model Validation
Using the formulated model, the prediction of tidal volume was also obtained using

data from the reference instrumentation (1@). Moreover, the formulated model was
validated by performing a leave-one-subject-out cross-validation procedure using either
wearable-device data (HRwp and BRyp) or breath-by-breath data (HRrgr and BRggp), in
addition to age and BMI. Specifically, the model was trained on 8 subjects (one less than
the total number of subjects) and tested on the remaining one; thus, the procedure was
repeated nine times.

2.6. Statistics

Distributions of all variables were reported in terms of mean + standard deviation.
HRwp and BRyp were compared with HRrpr and BRRgr, respectively, using paired T-
Student tests. Goodness of fit was assessed by computing the explained variance (R?).

Comparisons between both m and "@ predictions and breath-by-breath TV were
performed by test of equivalence, Bland—Altman plots, Persons’ correlation analysis, and
linear regression analysis. The statistical significance level was set at 0.05. All data process-
ing, modeling, and statistics acquisition were performed using the MATLAB® software
(Mathworks, version R2019a, Natick, MA, USA).

3. Results

The number of original samples and the number of samples considered reliable after
pre-processing are reported in Table 2. After pre-processing, 2409 out of 2421 samples
(99.5%) were considered reliable. Distributions of predictors for wearable-device data
and reference instrumentation data are reported in Table 3; no statistical differences were
observed between HRwp and HRggp (p-value > 0.05) and between BRywp and BRRgr
(p-value > 0.05). The final formulation of the model is described by the following equation:

@
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Table 2. Number of original samples, number of samples considered reliable after pre-processing
and data division for the leave-one-subject-out cross-validation procedure.

Subject Original Reliable Training Testing
1 200 199 2210 199
2 271 271 2138 271
3 239 233 2176 233
4 278 273 2136 273
5 285 285 2124 285
6 238 238 2171 238
7 288 288 2121 288
8 348 248 2061 348
9 274 274 2135 274

Table 3. Distributions of the predictors.

Wearable Reference
. Age BMI Device Instrumentation
Subject 2

(years) (kg/m*) HRwp BRwp HRRgr BRREr

(bpm) (cpm) (bpm) (cpm)

1 42 24.2 137 + 23 24 +7 133 £ 25 27 +9
2 51 25.0 146 + 22 30 £ 12 142 + 24 34 +17
3 52 22.0 139 +£ 24 25+5 141 £ 24 26 £ 6
4 45 23.5 156 + 22 30+9 157 £ 22 34+ 15
5 53 22.7 128 + 26 31+7 129 + 27 34 +12
6 46 22.3 146 + 32 26 +9 147 £+ 32 29 + 12
7 27 21.0 149 + 25 307 150 + 24 32+10
8 27 24.1 164 + 26 38+9 160 + 27 39+ 14
9 40 24.1 134 + 31 29+9 130 £+ 30 30+9
All 41 £ 10 228 £1.3 145 + 28 30 £ 10 144 + 29 32+ 13

BMI: body mass index (kg/ m?2); HRwp: heart rate from the wearable device (bpm); BRwp: breathing rate from
the wearable device (cpm); HRggp: heart rate from the reference instrumentation (bpm); BRrgg: breathing rate
from the reference instrumentation (cpm). Data of all subjects are reported as mean + standard deviation.

The values of the model parameters obtained by applying the stepwise linear regres-
sion approach are reported in Table 4; the R? value for model formulation is equal to
0.71. Bland—Altman plots and results of the linear regression analysis for the comparison
between both m and m predictions and breath-by-breath TV are represented in
Figure 1. Bland-Altman analysis confirmed very good TVwp estimations (confidence
intervals: [—0.01; 0.01] L), and good f@ estimations (confidence intervals: [0.05; 0.08] L).

The data division for the leave-one-subject-out cross-validation procedure is reported
in Table 2. The results of the leave-one-subject-out cross-validation procedure in terms of R?,
Pearson’s correlation coefficients, and predicted tidal volume using either wearable-device
data (T/VW\D) or reference instrumentation data (T/VE:) are reported in Table 5. Values
of R? and correlation coefficients confirmed the goodness of fit. The results of the test of
equivalence revealed a substantial equivalence between m and TV and between "ﬁ/R\EF
and TV (Table 5), with an equivalence margin equal to 70% of a standard deviation.
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Figure 1. Bland—Altman plots for the comparison between: (A) prediction of tidal volume using
wearable-device data (m) and breath-by-breath tidal volume (TV); (B) prediction of tidal volume
using reference instrumentation (m) predictions and breath-by-breath TV; mean and limits of
agreement (LoA) are reported, together with the related confidence interval (CI). Linear regression
analysis for the comparison between: (C) prediction of tidal volume using wearable-device data
(m) and breath-by-breath tidal volume (TV); (D) prediction of tidal volume using reference
instrumentation (m) and breath-by-breath TV; correlation coefficient is reported (p), together

with statistical significance (* indicates p < 0.05).

Table 4. Values of the model parameters obtained by applying the stepwise linear regression approach

with interactions.

Constant («) —1146 L (p <10~21)

Linear (3)
Age BMI HRWD BRWD
L L-m? L L
0.30 Vears 0.39 kfg —0.02 bpm 0.17 pm
(p<10773) (p<10719) (p=0.05) (p<107%)
Interaction (y)
Age BMI HRwp BRwp
L L
Age ) ) —0.12 rear b —0.46 Wai}ﬁ
(p<10~*) (p<107°)
0.20 L’ —4.80 L’
BMI - - 7 kg-bpm " kg-cpm
(rp<1077) (p<107%)
L L-m? L
HRwp —0.12 years-bpm 0.20 g.bglm _ —0.35 bplrr?-cpm
(<1079 (< 10—7)2 ) (p<10712)
L L.
BRwp —0.46 soitm —4.80 prars ~0.35 ppmicom )
(rp<107°) (p<107% (p <10712)

HRwp: heart rate from the wearable device (bpm); BRwp: breathing rate from the wearable device (cpm); BMI:

body mass index (kg/m?).
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Table 5. Distribution estimations and gold standard of the cross-validation.
Wearable Device Reference Instrumentation
Subject TV (L) TVwp (L) R? (adi) p (adi) TVger (L) R? (adi) p (adi)
1 25+0.8 26+04* 0.66 0.918 26+05* 0.66 0.94 8
2 294+0.7 24+03* 0.75 0.758 224+04* 0.78 0.835
3 27+06 3.0+06* 0.65 0.97 § 31+06* 0.68 0.98 8
4 28+05 3.0+04* 0.69 0.69 8 3.0+04* 0.69 0.76 §
5 24+05 24+05* 0.65 0938 22+05*% 0.66 0.958
6 3.1+0.6 2.7 +£0.7* 0.70 0.68 8 28+£07* 0.70 0738
7 25405 28+04* 0.66 0.93 8 28+04* 0.68 0.94 5
8 22+04 32+£05* 0.72 0938 32+06* 0.75 0938
9 24406 1.7 +£0.8* 0.69 0.96 8 1.8+0.7* 0.69 0.958

TV: breath-by-breath tidal volume (L); m: prediction of tidal volume using wearable-device data (L); m:
prediction of tidal volume using reference instrumentation data (L); R?: explained variance. Data of all subjects
are reported as mean + standard deviation. * p-value < 0.05 assuming limits of equivalence equal to 70% of
standard deviation. § p-value < 0.05 for Pearson’s correlation analysis.

4. Discussion

This study proposed a multiple regression model for the indirect estimation of the
tidal volume during an exercise stress test, using heart rate and breathing rate directly
acquired from a commercially available wearable device, in addition to basic individual
characteristics of the subject such as the age and the body mass index. The proposed ap-
proach appeared suitable for predicting tidal volume using wearable-device data, including
when evaluated on new subjects. The reliability of the model formulation with respect
to the selected predictors was also evaluated by considering predictors measured with
reference instrumentation; the model appeared unaffected by the way in which heart rate
and breathing rate were measured. On the basis of these considerations, the formulated
model can be considered not subject-specific and not instrumentation-specific.

To the best of our knowledge, only the pilot study by Lazaro et al. [17] estimated
the tidal volume using an approach similar to the one proposed by us. Although both
approaches used wearable devices, our approach differs from that of Lazaro et al. [17]
in two major respects. Firstly, the predictors used by Lazaro et al. [17] were based on
electrocardiogram-derived respiration, whose extraction requires extensive processing of
an acquired electrocardiogram; by contrast, in our approach, heart rate and breathing rate
directly measured from the wearable device were used, without the need of additional
extensive pre-processing. Secondly, in the study by Lazaro et al. [17], only tidal volume
measured during a lab-controlled experiment was considered instead of dynamic conditions
as the one characterizing exercise stress test. Thus, the very limited pre-processing required
and the ability to deal with dynamic conditions represent the two main advantages of the
proposed approach.

The multiple regression model formulated in our approach includes not only linear
terms but also interactions, which is different from what was found in other studies
not necessarily dealing with wearable devices [17,18]. Of note, previous studies did not
consider the individual characteristics of the subjects (such as age and body mass index) as
predictors. Their addition does not represent a particular issue, since these parameters can
be easily provided. At the same time, the inclusion of such information may be important
for tailoring the methodology on the basis of the subject’s characteristics. Indeed, both
age and body mass index showed interaction effects with heart rate and breathing rate
(see Table 3).

The importance of the selected predictors can be confirmed by the literature. Age
and body composition were demonstrated as essential in the clinical assessment of tidal
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volume [21,22]. Of note, body composition may be estimated by several indexes, such as
body mass index or body surface area. In the proposed approach, body mass index was
selected as the clinical index of body composition, considering its wide diffusion and easy
estimation. The body surface area is a measurement of the same physiological structure;
it is thus highly correlated with body mass index [23] and was not included among the
predictors. Gender is also known to affect tidal volume [21,22], but it was not possible to
assess its effect in the present study since all the volunteers were males. Moreover, tidal
volume has been shown to continuously adjust on the basis of breathing rate, but not vice
versa [4,24]. Furthermore, despite intra-subject differences, tidal volume variations are also
correlated with heart rate [25,26]. However, we cannot exclude the possibility that other
factors not considered in this study may affect the ability of our model to estimate tidal
volume. For instance, between-subject differences in exercise capacity may lead to different
values of tidal volume that are not captured by age, body mass index, or breathing-rate or
heart-rate values. In addition, our results may not necessarily be extended to other exercise
protocols or modalities. Since the number of subjects included in the present study is quite
limited—although still comparable with similar studies [17,18]—and their characteristics
do not cover all the possible variety of conditions, further studies are needed to address
these issues.

Heart rate and breathing rate can be simultaneously and reliably measured using
commercially available wearable devices. These devices are usually associated with user-
friendly software applications. Our model may be easily integrated in the associated
software, guaranteeing an indirect real-time estimation of tidal volume for the user. In the
present work, heart rate and breathing rate were acquired using BioHarness 3.0 by Zephyr
(Annapolis, MD, USA), in which two sensing elements are present, one for the measure of
the electrocardiogram and the other one for the measure of the breathing rate. This may
represent a limitation of the proposed approach with respect to other approaches requiring
only a single sensing element [17,18]. Thus, a possible extension of the proposed approach
may deal with the estimation of the breathing rate from the electrocardiogram, in order to
derive the two predictors from the same sensing element.

5. Conclusions

This study proposed a multiple regression model for the indirect estimation of the
tidal volume during an exercise stress test, using features directly acquired from wearable
devices in addition to basic individual characteristics, such as the age and the body mass
index of the subject. The proposed model can be considered not subject-specific and not
instrumentation-specific.
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