566 research outputs found
Epidemiology of Sport-Related Concussions in High School Athletes: National Athletic Treatment, Injury and Outcomes Network (NATION), 2011–2012 Through 2013–2014
Sports participation is one of the leading causes of concussions among nearly 8 million US high school student-athletes
Descriptive Analysis of a Baseline Concussion Battery Among U.S. Service Academy Members: Results from the Concussion Assessment, Research, and Education (CARE) Consortium
Introduction
The prevalence and possible long-term consequences of concussion remain an increasing concern to the U.S. military, particularly as it pertains to maintaining a medically ready force. Baseline testing is being used both in the civilian and military domains to assess concussion injury and recovery. Accurate interpretation of these baseline assessments requires one to consider other influencing factors not related to concussion. To date, there is limited understanding, especially within the military, of what factors influence normative test performance. Given the significant physical and mental demands placed on service academy members (SAM), and their relatively high risk for concussion, it is important to describe demographics and normative profile of SAMs. Furthermore, the absence of available baseline normative data on female and non-varsity SAMs makes interpretation of post-injury assessments challenging. Understanding how individuals perform at baseline, given their unique individual characteristics (e.g., concussion history, sex, competition level), will inform post-concussion assessment and management. Thus, the primary aim of this manuscript is to characterize the SAM population and determine normative values on a concussion baseline testing battery.
Materials and Methods
All data were collected as part of the Concussion Assessment, Research and Education (CARE) Consortium. The baseline test battery included a post-concussion symptom checklist (Sport Concussion Assessment Tool (SCAT), psychological health screening inventory (Brief Symptom Inventory (BSI-18) and neurocognitive evaluation (ImPACT), Balance Error Scoring System (BESS), and Standardized Assessment of Concussion (SAC). Linear regression models were used to examine differences across sexes, competition levels, and varsity contact levels while controlling for academy, freshman status, race, and previous concussion. Zero inflated negative binomial models estimated symptom scores due to the high frequency of zero scores.
Results
Significant, but small, sex effects were observed on the ImPACT visual memory task. While, females performed worse than males (p < 0.0001, pη2 = 0.01), these differences were small and not larger than the effects of the covariates. A similar pattern was observed for competition level on the SAC. There was a small, but significant difference across competition level. SAMs participating in varsity athletics did significantly worse on the SAC compared to SAMs participating in club or intramural athletics (all p’s < 0.001, η2 = 0.01). When examining symptom reporting, males were more than two times as likely to report zero symptoms on the SCAT or BSI-18. Intramural SAMs had the highest number of symptoms and severity compared to varsity SAMs (p < 0.0001, Cohen’s d < 0.2). Contact level was not associated with SCAT or BSI-18 symptoms among varsity SAMs. Notably, the significant differences across competition level on SCAT and BSI-18 were sub-clinical and had small effect sizes.
Conclusion
The current analyses provide the first baseline concussion battery normative data among SAMs. While statistically significant differences may be observed on baseline tests, the effect sizes for competition and contact levels are very small, indicating that differences are likely not clinically meaningful at baseline. Identifying baseline differences and significant covariates is important for future concussion-related analyses to inform concussion evaluations for all athlete levels
Age at First Concussion Influences Number of Subsequent Concussions
Background: Individuals that sustain their first concussion during childhood may be at greater risk for sustaining multiple concussions throughout their lifetime, due to a longer window of vulnerability. Purpose: To estimate the association between age at first concussion with number of subsequent concussions. Methods: A total of 23,582 collegiate athletes from 26 universities and military cadets from three military academies completed a concussion history questionnaire (65% males, age: 19.9±1.4years). Participants self-reported concussions and age at time of each injury. Participants with a history of concussion (n=3,647, 15.5%) were categorized as having sustained their first concussion during childhood (<10 years old - yo) or adolescence (≥10yo & ≤18yo). Poisson regression was used to model age group (childhood, adolescence) predicting number of subsequent concussions (0, 1, 2+). A second Poisson regression was developed to determine whether age at first concussion predicted number of subsequent concussions. Results: Participants self-reporting their first concussion during childhood had an increased risk of sustaining subsequent concussions (RR=2.19, 95% CI: 1.82, 2.64) compared to participants self-reporting their first concussion during adolescence. For every one-year increase in age at first concussion, we observed a 16% reduction in the risk of subsequent concussion (RR=0.84, 95% CI:0.82,0.86). Conclusion(s): Individuals self-reporting a concussion at a young age sustained a higher number of concussions prior to the age of 18. Concussion prevention, recognition, and reporting strategies are of particular need at the youth level
Age at First Concussion Influences Number of Subsequent Concussions
Background: Individuals that sustain their first concussion during childhood may be at greater risk for sustaining multiple concussions throughout their lifetime, due to a longer window of vulnerability. Purpose: To estimate the association between age at first concussion with number of subsequent concussions. Methods: A total of 23,582 collegiate athletes from 26 universities and military cadets from three military academies completed a concussion history questionnaire (65% males, age: 19.9±1.4years). Participants self-reported concussions and age at time of each injury. Participants with a history of concussion (n=3,647, 15.5%) were categorized as having sustained their first concussion during childhood (<10 years old - yo) or adolescence (≥10yo & ≤18yo). Poisson regression was used to model age group (childhood, adolescence) predicting number of subsequent concussions (0, 1, 2+). A second Poisson regression was developed to determine whether age at first concussion predicted number of subsequent concussions. Results: Participants self-reporting their first concussion during childhood had an increased risk of sustaining subsequent concussions (RR=2.19, 95% CI: 1.82, 2.64) compared to participants self-reporting their first concussion during adolescence. For every one-year increase in age at first concussion, we observed a 16% reduction in the risk of subsequent concussion (RR=0.84, 95% CI:0.82,0.86). Conclusion(s): Individuals self-reporting a concussion at a young age sustained a higher number of concussions prior to the age of 18. Concussion prevention, recognition, and reporting strategies are of particular need at the youth level
The Association Between Persistent White-Matter Abnormalities and Repeat Injury After Sport-Related Concussion
Objective: A recent systematic review determined that the physiological effects of concussion may persist beyond clinical recovery. Preclinical models suggest that ongoing physiological effects are accompanied by increased cerebral vulnerability that is associated with risk for subsequent, more severe injury. This study examined the association between signal alterations on diffusion tensor imaging following clinical recovery of sport-related concussion in athletes with and without a subsequent second concussion. Methods: Average mean diffusivity (MD) was calculated in a region of interest (ROI) in which concussed athletes (n = 82) showed significantly elevated MD acutely after injury (<48 h), at an asymptomatic time point, 7 days post-return to play (RTP), and 6 months relative to controls (n = 69). The relationship between MD in the identified ROI and likelihood of sustaining a subsequent concussion over a 1-year period was examined with a binary logistic regression (re-injured, yes/no). Results: Eleven of 82 concussed athletes (13.4%) sustained a second concussion within 12 months of initial injury. Mean MD at 7 days post-RTP was significantly higher in those athletes who went on to sustain a repeat concussion within 1 year of initial injury than those who did not (p = 0.048; d = 0.75). In this underpowered sample, the relationship between MD at 7 days post-RTP and likelihood of sustaining a secondary injury approached significance [χ2 (1) = 4.17, p = 0.057; B = 0.03, SE = 0.017; OR = 1.03, CI = 0.99, 1.07]. Conclusions: These preliminary findings raise the hypothesis that persistent signal abnormalities in diffusion imaging metrics at RTP following concussion may be predictive of a repeat concussion. This may reflect a window of cerebral vulnerability or increased susceptibility following concussion, though understanding the clinical significance of these findings requires further study
Epidemiologic Measures for Quantifying the Incidence of Concussion in National Collegiate Athletic Association Sports
Injury rates compare the relative frequency of sport-related concussions across groups. However, they may not be intuitive to policy makers, parents, or coaches in understanding the likelihood of concussion
- …