61 research outputs found

    The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay

    Get PDF
    Neutron beta decay is one of the most fundamental processes in nuclear physics and provides sensitive means to uncover the details of the weak interaction. Neutron beta decay can evaluate the ratio of axial-vector to vector coupling constants in the standard model, λ=gA/gV\lambda = g_A / g_V, through multiple decay correlations. The Nab experiment will carry out measurements of the electron-neutrino correlation parameter aa with a precision of δa/a=103\delta a / a = 10^{-3} and the Fierz interference term bb to δb=3×103\delta b = 3\times10^{-3} in unpolarized free neutron beta decay. These results, along with a more precise measurement of the neutron lifetime, aim to deliver an independent determination of the ratio λ\lambda with a precision of δλ/λ=0.03%\delta \lambda / \lambda = 0.03\% that will allow an evaluation of VudV_{ud} and sensitively test CKM unitarity, independent of nuclear models. Nab utilizes a novel, long asymmetric spectrometer that guides the decay electron and proton to two large area silicon detectors in order to precisely determine the electron energy and an estimation of the proton momentum from the proton time of flight. The Nab spectrometer is being commissioned at the Fundamental Neutron Physics Beamline at the Spallation Neutron Source at Oak Ridge National Lab. We present an overview of the Nab experiment and recent updates on the spectrometer, analysis, and systematic effects.Comment: Presented at PPNS201

    The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia

    Get PDF
    Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning.DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized.DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning

    The 20S Proteasome Splicing Activity Discovered by SpliceMet

    Get PDF
    The identification of proteasome-generated spliced peptides (PSP) revealed a new unpredicted activity of the major cellular protease. However, so far characterization of PSP was entirely dependent on the availability of patient-derived cytotoxic CD8+ T lymphocytes (CTL) thus preventing a systematic investigation of proteasome-catalyzed peptide splicing (PCPS). For an unrestricted PSP identification we here developed SpliceMet, combining the computer-based algorithm ProteaJ with in vitro proteasomal degradation assays and mass spectrometry. By applying SpliceMet for the analysis of proteasomal processing products of four different substrate polypeptides, derived from human tumor as well as viral antigens, we identified fifteen new spliced peptides generated by PCPS either by cis or from two separate substrate molecules, i.e., by trans splicing. Our data suggest that 20S proteasomes represent a molecular machine that, due to its catalytic and structural properties, facilitates the generation of spliced peptides, thereby providing a pool of qualitatively new peptides from which functionally relevant products may be selected

    Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system

    Get PDF
    Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information

    Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate.

    No full text
    The need for both high electrical conductivity and low thermal conductivity creates a design conflict for thermoelectric systems, leading to the consideration of materials with complicated crystal structures. Rattling of ions in cages results in low thermal conductivity, but understanding the mechanism through studies of the phonon dispersion using momentum-resolved spectroscopy is made difficult by the complexity of the unit cells. We have performed inelastic X-ray and neutron scattering experiments that are in remarkable agreement with our first-principles density-functional calculations of the phonon dispersion for thermoelectric Na(0.8)CoO2, which has a large-period superstructure. We have directly observed an Einstein-like rattling mode at low energy, involving large anharmonic displacements of the sodium ions inside multi-vacancy clusters. These rattling modes suppress the thermal conductivity by a factor of six compared with vacancy-free NaCoO2. Our results will guide the design of the next generation of materials for applications in solid-state refrigerators and power recovery

    Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site

    No full text
    Aminopeptidase N from Escherichia coli is a major metalloprotease that participates in the controlled hydrolysis of peptides in the proteolytic pathway. Determination of the 870-aa structure reveals that it has four domains similar to the tricorn-interacting factor F3. The thermolysin-like active site is enclosed within a large cavity with a volume of 2,200 Å(3), which is inaccessible to substrates except for a small opening of approximately 8–10 Å. The substrate-based inhibitor bestatin binds to the protein with minimal changes, suggesting that this is the active form of the enzyme. The previously described structure of F3 had three distinct conformations that were described as “closed,” “intermediate,” and “open.” The structure of aminopeptidase N from E. coli, however, is substantially more closed than any of these. Taken together, the results suggest that these proteases, which are involved in intracellular peptide degradation, prevent inadvertent hydrolysis of inappropriate substrates by enclosing the active site within a large cavity. There is also some evidence that the open form of the enzyme, which admits substrates, remains inactive until it adopts the closed form
    corecore