1,383 research outputs found

    Cosmic rays in magnetized intracluster plasma

    Full text link
    Recent results are reported on Magnetic Fields in Clusters of Galaxies, Diffuse Radio Emission, and Radio - X-ray connection in Radio Halos.Comment: 2 pages, 1 figure, Invited talk at the JD15 "Magnetic Fields in Diffuse Media", IAU XXVII General Assembly, Rio de Janeir

    The intracluster magnetic field power spectrum in Abell 665

    Full text link
    The goal of this work is to investigate the power spectrum of the magnetic field associated with the giant radio halo in the galaxy cluster A665. For this, we present new deep Very Large Array total intensity and polarization observations at 1.4 GHz. We simulated Gaussian random three-dimensional turbulent magnetic field models to reproduce the observed radio halo emission. By comparing observed and synthetic radio halo images we constrained the strength and structure of the intracluster magnetic field. We assumed that the magnetic field power spectrum is a power law with a Kolmogorov index and we imposed a local equipartition of energy density between relativistic particles and field. Under these assumptions, we find that the radio halo emission in A665 is consistent with a central magnetic field strength of about 1.3 micro-G. To explain the azimuthally averaged radio brightness profile, the magnetic field energy density should decrease following the thermal gas density, leading to an averaged magnetic field strength over the central 1 Mpc^3 of about 0.75 micro-G. From the observed brightness fluctuations of the radio halo, we infer that the outer scale of the magnetic field power spectrum is ~450 kpc, and the corresponding magnetic field auto-correlation length is ~100 kpc.Comment: 12 pages, 6 figures, accepted for publication on A&A, language editing. For a high quality version see http://erg.ca.astro.it/preprints/a665_halo

    The patient burden of screening mammography recall.

    Get PDF
    OBJECTIVE: The aim of this article is to evaluate the burden of direct and indirect costs borne by recalled patients after a false positive screening mammogram. METHODS: Women aged 40-75 years undergoing screening mammography were identified from a U.S. commercial claims database. Women were required to have 12 months pre- and 6 months post-index enrollment to identify utilization and exclude patients with subsequent cancer diagnoses. Recall was defined as the use of diagnostic mammography or breast ultrasound during 6 months post-index. Descriptive statistics were presented for recalled and non-recalled patients; differences were compared using the chi square test. Out-of-pocket costs were totaled by utilization type and in aggregate for all recall utilization. RESULTS: Of 1,723,139 patients with a mammography screening that were not diagnosed with breast cancer, 259,028 (15.0%) were recalled. Significant demographic differences were observed between recalled and non-recalled patients. The strongest drivers of patient costs were image-guided biopsy (mean 351among11.8351 among 11.8% utilizing), diagnostic mammography (50; 80.1%), and ultrasound ($58; 65.7%), which accounted for 29.9%, 29.0%, and 27.5% of total recall costs, respectively. For many patients the entire cost of recall utilization was covered by the health plan. Total costs were substantially greater among patients with biopsy; one-third of all patients experienced multiple days of recall utilization. CONCLUSION: After a false positive screening mammography, recalled women incurred both direct medical costs and indirect time costs. The cost burden for women with employer-based insurance was dependent upon the type of utilization and extent of health plan coverage. Additional research and technologies are needed to address the entirety of the recall burden in diverse populations of women

    Unravelling the origin of large-scale magnetic fields in galaxy clusters and beyond through Faraday Rotation Measures with the SKA

    Get PDF
    We investigate the possibility for the SKA to detect and study the magnetic fields in galaxy clusters and in the less dense environments surrounding them using Faraday Rotation Measures. To this end, we produce 3-dimensional magnetic field models for galaxy clusters of different masses and in different stages of their evolution, and derive mock rotation measure observations of background radiogalaxies. According to our results, already in phase I, we will be able to infer the magnetic field properties in galaxy clusters as a function of the cluster mass, down to 101310^{13} solar-masses. Moreover, using cosmological simulations to model the gas density, we have computed the expected rotation measure through shock-fronts that occur in the intra-cluster medium during cluster mergers. The enhancement in the rotation measure due to the density jump will permit to constraint the magnetic field strength and structure after the shock passage. SKA observations of polarised sources located behind galaxy clusters will answer several questions about the magnetic field strength and structure in galaxy clusters, and its evolution with cosmic time.Comment: 9 pages, 4 Figures, to appear as part of 'Cosmic Magnetism' in Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14

    Cluster magnetic fields through the study of polarized radio halos in the SKA era

    Get PDF
    Galaxy clusters are unique laboratories to investigate turbulent fluid motions and large scale magnetic fields. Synchrotron radio halos at the center of merging galaxy clusters provide the most spectacular and direct evidence of the presence of relativistic particles and magnetic fields associated with the intracluster medium. The study of polarized emission from radio halos is extremely important to constrain the properties of intracluster magnetic fields and the physics of the acceleration and transport of the relativistic particles. However, detecting this polarized signal is a very hard task with the current radio facilities.We use cosmological magneto-hydrodynamical simulations to predict the expected polarized surface brightness of radio halos at 1.4 GHz. We compare these expectations with the sensitivity and the resolution reachable with the SKA1. This allows us to evaluate the potential for studying intracluster magnetic fields in the surveys planned for SKA1.Comment: 11 pages, 4 figures; to appear as part of 'Cosmic Magnetism' in Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14)10

    Simulations of the polarized radio sky and predictions on the confusion limit in polarization for future radio surveys

    Get PDF
    Numerical simulations offer the unique possibility to forecast the results of surveys and targeted observations that will be performed with next generation instruments like the Square Kilometre Array. In this paper, we investigate for the first time how future radio surveys in polarization will be affected by confusion noise. To do this, we produce 1.4 GHz simulated full-Stokes images of the extra-galactic sky by modelling various discrete radio sources populations. The results of our modelling are compared to data in the literature to check the reliability of our procedure. We also estimate the number of polarized sources detectable by future surveys. Finally, from the simulated images we evaluate the confusion limits in I, Q, and U Stokes parameters, giving analytical formulas of their behaviour as a function of the angular resolution.Comment: 9 pages, 8 figure

    Retrospective Analysis to Describe Associations Between Tumor Necrosis Factor Alpha Inhibitors and COPD-Related Hospitalizations

    Get PDF
    Background: Limited information exists on the impact of tumor necrosis factor inhibition on COPD exacerbations. This retrospective study characterized this impact among COPD patients with underlying autoimmune conditions, exposed to tumor necrosis factor inhibitors (TNFi) and/or non-biologic disease-modifying antirheumatic drugs (DMARDs).Patients and methods: Adult COPD patients with ≥1 diagnosis for rheumatoid arthritis (RA), psoriasis (PsO), psoriatic arthritis (PsA), or ankylosing spondylitis (AS) before or within 6 months following the index COPD diagnosis were identified from the Truven Health MarketScan® databases. Patients were required to have a second claim for RA, PsO, PsA, AS, or DMARD use (biologic or non-biologic) prior to or up to 6 months following the index date. Incidence of COPD-related hospitalizations and emergency room (ER) visits was evaluated in relation to treatment with TNFi and/or DMARDs and other potential risk factors.Results: The study cohort included 40,687 patients (untreated, 37.7%; non-biologic DMARD, 35.4%; TNFi + non-biologic DMARD, 18%; TNFi, 8.8%). The proportion of patients with a COPD-related hospitalization and the incidence of COPD-related hospitalization (per 100 person-years) were lowest in the TNFi cohort (8.6%; 3.54, 95% confidence interval [CI]: 3.16–3.95) and the TNFi + non-biologic DMARD cohort (8.4%; 2.85, 95% CI: 2.63–3.08). In multivariate models, treatment with TNFi + non-biologic DMARD reduced the risk of COPD-related hospitalization or ER visits by 32% relative to non-biologic DMARDs (hazard ratio: 0.68; 95% CI: 0.61–0.75).Conclusion: In real-world settings, TNFi monotherapy confers similar risk for COPD-related hospitalization or ER visits as a non-biologic DMARD. Decreased risk was found among those treated with both TNFi and a non-biologic DMARD

    Simulations of the polarized radio sky and predictions on the confusion limit in polarization for future radio surveys

    Get PDF
    Numerical simulations offer the unique possibility to forecast the results of surveys and targeted observations that will be performed with next generation instruments like the Square Kilometre Array. In this paper, we investigate for the first time how future radio surveys in polarization will be affected by confusion noise. To do this, we produce 1.4 GHz simulated full-Stokes images of the extra-galactic sky by modelling various discrete radio sources populations. The results of our modelling are compared to data in the literature to check the reliability of our procedure. We also estimate the number of polarized sources detectable by future surveys. Finally, from the simulated images we evaluate the confusion limits in I, Q, and U Stokes parameters, giving analytical formulas of their behaviour as a function of the angular resolution
    • …
    corecore