113 research outputs found

    Biosorptive removal of Pb2+, Cd2+ and Zn2+ ions from water by agenaria vulgaris shell

    Get PDF
    Lagenaria vulgaris (LV) shell was used as a biosorbent for the removal of heavy metal ions, Pb2+, Cd2+ and Zn2+, from aqueous solutions. Experiments were carried out under batch conditions. The effects of contact time, initial pH, temperature and stirring speed on removal efficiency are presented. Sorption of the investigated metals was fast, reaching equilibrium after about 5 to 10 min, depending on the metal. Biosorption was highly pH-dependent, and the optimal pH for investigated metals was in the range of 4.5 to 6.0. The effects of temperature demonstrated that biosorption of the metals is a chemical process. SEM analysis revealed interesting morphological changes after acid refinement of the raw biosorbent and metal uptake that is related to the chemical nature of the biosorption process. EDX analysis of Lagenaria vulgaris biosorbent(LVB) before and after metal sorption revealed that the ion exchange mechanism was the principal sorption process. Fourier transform infrared spectroscopy (FTIR) analysis has shown that major functional groups (carboxyl and hydroxyl) on the biosorbent surface took part in the metal ion uptake process as active sites. The results obtained showed that Lagenaria vulgaris based biosorbent could be used as an effective and low-cost pre-treatment step for removal of toxic metals from wastewaters

    Seeding hESCs to achieve optimal colony clonality

    Get PDF
    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have promising clinical applications which often rely on clonally-homogeneous cell populations. To achieve this, it is important to ensure that each colony originates from a single founding cell and to avoid subsequent merging of colonies during their growth. Clonal homogeneity can be obtained with low seeding densities; however, this leads to low yield and viability. It is therefore important to quantitatively assess how seeding density affects clonality loss so that experimental protocols can be optimised to meet the required standards. Here we develop a quantitative framework for modelling the growth of hESC colonies from a given seeding density based on stochastic exponential growth. This allows us to identify the timescales for colony merges and over which colony size no longer predicts the number of founding cells. We demonstrate the success of our model by applying it to our own experiments of hESC colony growth; while this is based on a particular experimental set-up, the model can be applied more generally to other cell lines and experimental conditions to predict these important timescales

    Differences in the Activity of Endogenous Bone Morphogenetic Protein Signaling Impact on the Ability of Induced Pluripotent Stem Cells to Differentiate to Corneal Epithelial-Like Cells

    Get PDF
    Cornea is a clear outermost layer of the eye which enables transmission of light onto the retina. The transparent corneal epithelium is regenerated by limbal stem cells (LSCs), whose loss/dysfunction results in LSCs deficiency (LSCD). Ex vivo expansion of autologous LSCs obtained from patient's healthy eye followed by transplantation onto the LSCs damaged/deficient eye, has provided a successful treatment for unilateral LSCD. However, this is not applicable to patient with total bilateral LSCD, where LSCs are lost/damaged from both eyes. We investigated the potential of human induced pluripotent stem cell (hiPSC) to differentiate into corneal epithelial-like cells as a source of autologous stem cell treatment for patients with total bilateral LSCD. Our study showed that combined addition of bone morphogenetic protein 4 (BMP4), all trans-retinoic acid and epidermal growth factor for the first 9 days of differentiation followed by cell-replating on collagen-IV-coated surfaces with a corneal-specific-epithelial cell media for an additional 11 days, resulted in step wise differentiation of human embryonic stem cells (hESC) to corneal epithelial progenitors and mature corneal epithelial-like cells. We observed differences in the ability of hiPSC lines to undergo differentiation to corneal epithelial-like cells which were dependent on the level of endogenous BMP signaling and could be restored via the activation of this signaling pathway by a specific transforming growth factor β inhibitor (SB431542). Together our data reveal a differential ability of hiPSC lines to generate corneal epithelial cells which is underlined by the activity of endogenous BMP signaling pathway

    Winter is coming: the future of cryopreservation.

    Get PDF
    The preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications. We describe the main challenges-scaling up to large volumes and complex tissues, preventing ice formation and mitigating cryoprotectant toxicity-discuss advantages and disadvantages of current methods and outline prospects for the future of the field

    Gal-3 plays an important pro-inflammatory role in the induction phase of acute colitis by promoting activation of NLRP3 inflammasome and production of IL-β in macrophages

    Get PDF
    BACKGROUND AND AIMS: Galectin-3 [Gal-3] is an endogenous lectin with a broad spectrum of immunoregulatory effects: it plays an important role in autoimmune/inflammatory and malignant diseases, but the precise role of Gal-3 in pathogenesis of ulcerative colitis is still unknown. METHODS: We used a model of dextran sulphate sodium [DSS]-induced acute colitis. The role of Gal-3 in pathogenesis of this disease was tested by evaluating disease development in Gal-3 deficient mice and administration of Gal-3 inhibitor. Disease was monitored by clinical, histological, histochemical, and immunophenotypic investigations. Adoptive transfer was used to detect cellular events in pathogenesis. RESULTS: Genetic deletion or pharmacological inhibition of Gal-3 significantly attenuate DSS-induced colitis. Gal-3 deletion suppresses production of pro-inflammatory cytokines in colonic macrophages and favours their alternative activation, as well as significantly reducing activation of NOD-like receptor family, pyrin domain containing 3 [NLRP3] inflammasome in macrophages. Peritoneal macrophages isolated from untreated Gal-3(-/-) mice and treated in vitro with bacterial lipopolysaccharide or DSS produce lower amounts of tumour necrosis factor alpha [TNF-α] and interleukin beta [IL-1β] when compared with wild type [WT] cells. Genetic deletion of Gal-3 did not directly affect total neutrophils, inflammatory dendritic cells [DCs] or natural killer [NK] T cells. However, the total number of CD11c+ CD80+ DCs which produce pro-inflammatory cytokines, as well as TNF-α and IL-1β producing CD45+ CD11c- Ly6G+ neutrophils were significantly lower in colons of Gal-3(-/-) DSS-treated mice. Adoptive transfer of WT macrophages significantly enhanced the severity of disease in Gal-3(-/-) mice. CONCLUSIONS: Gal-3 expression promotes acute DSS-induced colitis and plays an important pro-inflammatory role in the induction phase of colitis by promoting the activation of NLRP3 inflammasome and production of IL-1β in macrophages
    corecore