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Seeding heScs to achieve optimal 
colony clonality
L. e. Wadkin  1*, S. orozco-fuentes  1, i. neganova2,3, S. Bojic2, A. Laude4, M. Lako2, 
n. G. parker1 & A. Shukurov1

Human embryonic stem cells (heScs) and induced pluripotent stem cells (ipScs) have promising clinical 
applications which often rely on clonally-homogeneous cell populations. to achieve this, it is important 
to ensure that each colony originates from a single founding cell and to avoid subsequent merging of 
colonies during their growth. clonal homogeneity can be obtained with low seeding densities; however, 
this leads to low yield and viability. it is therefore important to quantitatively assess how seeding 
density affects clonality loss so that experimental protocols can be optimised to meet the required 
standards. Here we develop a quantitative framework for modelling the growth of heSc colonies from a 
given seeding density based on stochastic exponential growth. This allows us to identify the timescales 
for colony merges and over which colony size no longer predicts the number of founding cells. We 
demonstrate the success of our model by applying it to our own experiments of hESC colony growth; 
while this is based on a particular experimental set-up, the model can be applied more generally to 
other cell lines and experimental conditions to predict these important timescales.

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have promising clinical appli-
cations, including the advancement of cellular therapies, disease modelling and drug development, due to their 
self renewal potential and the ability to differentiate into specialised cells (pluripotency)1,2. However, continued 
efforts in understanding the complex behaviour of hESCs and iPSCs are necessary to make their clinical applica-
tions a reality.

A typical in-vitro hESC experiment involves the distribution of cells upon a growth material (the ‘seeding’ of 
cells onto a plate). The seeding density is then the number of cells placed on the growth material per unit area. 
Cells need to attach to the plate surface, which is covered by Matrigel or similar, for viability and proliferation; 
however, some cells do not successfully attach and are lost. The hESCs then form colonies by repeated mitosis in 
which two genetically identical daughter cells are produced from the division of the mother cell. The prolifera-
tion of cells in this way results in colonies of tightly packed cells in mono-layers along the growth material. The 
doubling time of stem cells varies and can be affected by various environmental and chemical factors, including 
cell density3–5.

An important measure of the self-renewal potential of stem cells is the clonality, the condition of being genet-
ically identical. Generating homogeneous populations of clonal cells is of great importance6,7 as clonally derived 
stem cell lines maintain pluripotency and proliferative potential for prolonged periods8. Some applications 
require clonal homogeneous populations, e.g. drug discovery9 and iPSCs for personalised medicine. The selec-
tion of the best clones for further experimentation needs to be optimised to make clinical applications safe. If the 
seeding density is high, the migration of cells and the growth of closely-separated cell groups can cause aggrega-
tion of colonies; this is undesirable when a homogeneous clonal population with identical genetic composition is 
required. The seeding density of cells has been shown to not only have an effect on the clonality of stem cells10, but 
also on their differentiation potential11. Moreover, culturing at an overly high density can cause DNA damage and 
culture adaptation, leading to increasing occurrence of chromosomal aberrations3,12,13.

Single hESCs are reported to have no effect on each other’s movement if they are greater than 150 μm apart10. 
It is therefore recommended to keep a minimum distance of 150 μm between colony boundaries throughout 
growth to assure the resulting clonal structures are from single founding hESCs. In our previous work we consid-
ered the kinematics of single and pairs of cells, and identified the occasional super-diffusive movements of cells 
which could lead to re-aggregation14,15.
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The quantification of stem cell behaviour assists in the development of mathematical models which can then 
be used as non-invasive predictive tools. The development of colonies is inherently stochastic containing many 
properties which occur with some randomness, such as cell growth, cell division and cell death. An overview of 
the modelling of cell processes is provided in16. For mammalian cells, colony formation from a single cell has been 
previously described using a stochastic Galton-Watson branching process model17. Cell proliferation or colony 
models can either be set on or off a regular or irregular lattice, and each cell can be modelled individually in an 
agent based model or using continuum models. A thorough summary of these different model types, along with 
their advantages and disadvantages with a view to tissue mechanics is provided in18.

Here we focus on quantifying the possibilities of re-aggregation due to the physical proximity of colonies at 
different seeding densities and consider the optimal seeding densities to form clonal structures. From experimen-
tal observations of colonies after a fixed evolution time, we infer a stochastic model for colony growth, a method 
previously applied to other cell types, including bacterial and cancerous cells19,20. To correctly initialize the model 
for a given seeding density, we take into account the proportion of seeded cells which begin as isolated cells, pairs, 
triples, and so on. We find that this is essential to capture the experimental observations. We use the model to 
simulate hESC colony growth at different seeding densities, consider the area coverage with time and calculate 
the critical time at which the homogeneous colonies begin to merge. These results can help inform cell seeding 
decisions to form homogeneous colonies from single founder cells.

Results
notation. The notation used throughout the manuscript is outlined here for convenience. The number of 
cells in a colony at a given time, t, is N(t), with t always in hours. Therefore the number of cells at 72 h is N(72). 
The initial number of cells at time t = 0 is N(0) ≡ N0. The seeding density is n0 and the density of attached cells 
after 24 h is η0 = 0.35n0, given in cells/cm2. The growth rate of a colony is γ (given in h−1), the division rate is 1/γ 
(given in h) and the population doubling time is td (given in h). The time at which the number of founder cells is 
indistinguishable based on colony size is t* (given in h). The average time at which colonies merge due to physical 
proximity is τ (given in h).

Experiments. hESCs were seeded at low density and grown into colonies. Two types of experiment were car-
ried out: Experiment 1 collected data on colony numbers 72 hours post-attachment and Experiment 2 collected 
data on the rates of cell attachment and the time to the first colonies merging. Further details are given in the 
Methods section.

Experimental colony size. From Experiment 1, the number of cells in each of the 48 colonies at 72 hours 
after cell attachment, N(72), was recorded and is shown for each colony arranged in ascending order in Fig. 1a. 
The corresponding histogram of N(72) is shown in Fig. 1b. The distribution is bimodal, confirmed by the kernel 
density estimation, with an outlier colony at N(72) = 77 cells. We remove this outlier colony for further analysis 
as it was most likely formed by several colony merges. We expect the number of cells at time t to evolve roughly as 
N(t) = N02t/td, where N0 ≡ N(0) is the initial number of cells and td is the time it takes for the population to double, 
or equivalently N(t) = N0eγt, where γ is the growth rate. The bimodal nature of N(72) implies that we have two 
distinct groups of colonies, lead by differences in N0 and/or differences in the growth rates between colonies. For 
a typical duration of the cell cycle, 16–18 hours, one expects 20 cells at 72 hours, corresponding to the first histo-
gram peak. The second peak, at about 40 cells per colony, suggests that some groups of cells have merged to form 
larger colonies during the 72 hour period, or that the initial condition of the colony growth was in fact N0 = 2. 
K-means clustering, a standard algorithm which partitions observations into clusters based upon minimising 
within cluster variance, splits N(72) into the two ranges, 7 ≤ N(72) ≤ 29 and 34 ≤ N(72) ≤ 77.

To ascertain the initial conditions that underlie the colony growth, we turn to Experiment 2, examining the 
cells after 24 hours; a typical image is shown in Fig. 1c. There are several characteristic features of the cell distribu-
tion revealed in this experiment. Firstly, the random initial positioning of the seeded cells means that some cells 
are initially isolated with no cells within the interaction distance (estimated as 150 μm). Other cells lie within the 
interaction distance of each other, forming groups of varying sizes. In Fig. 1c we colour-code the cells according 
to whether they are isolated, or are effectively in a pair or in a triple, to illustrate how N0 can vary at low seeding 
densities. We will return to this feature later.

Secondly, only a fraction of the originally seeded cells are attached to the plate at this time. Cells need to be 
attached to the plate for viability and proliferation - cells which do not attach are lost. We find for a range of seed-
ing densities, 1000 ≤ n0 ≤ 7000 cells/cm2, that on average 35.19% ± 4.23[0.99] (the mean ± one standard deviation 
[standard error]) of initially seeded cells were attached 24 hours after plating. Figure 1d shows the proportion of 
attached cells at different seeding densities. This rate of attachment is usual for stem cells in similar experiments. 
In the following modelling section of this paper we discuss N(t), the number of cells present in a colony over time, 
independent of original cell seeding densities. In the cell seeding section we discuss the effects of the cell plating 
densities, n0, where we assume that the actual density of cells present is η0 = 0.35n0 to account for the loss at the 
attachment stage. Note this relationship is easily adjustable for different attachment rates.

Development of the exponential growth model. Throughout this paper we define time t = 0 to be 
the time that seeded cells have attached to the plate and their proliferation starts. Before this time some cells are 
lost (as reported above and shown in Fig. 1d) and there is a delay in the growth from the lag-phase experienced 
by newly plated in vitro hESCs as they adjust to the environment21. This is consistent with the experimental data 
which considers 72 h after cell attachment.

The simplest deterministic model for the number of cells in a colony at time t, N(t), assumes a constant cell 
division time 1/γ and simultaneous division of all the cells, leading to
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γ=
dN t

dt
N( ) ,

which has the solution,

= γN t N e( ) ,t0

where N0 ≡ N(0) is the initial number of cells at t = 0. However, the cell cycle duration is variable due to various 
factors, such as inhomogeneities in the nutrient distribution within the growth medium and the inherent varia-
tion in the cell cycle duration between different clones. Such effects can be allowed for by considering a Gaussian 
random growth rate γ, with a mean value μ and standard deviation σ:

γ μ σ= .γ ~N t N e( ) , Norm( , ) (1)t
0

2

Different colonies thus grow at different rates sampled from the Gaussian probability distribution. The num-
ber of cells then follows a lognormal distribution, μ σ~N t( ) LogNorm( , )0 0

2 , where μ0 = tμ + log(N0) and 
σ0

2 = t2σ2. A short mathematical explanation can be found in the Supplementary Information. However, this 
model fails to explain the bimodal distribution of the colony sizes observed at t = 72 h. This is presented in the 
Supplementary Information, Fig. S1.

We suggest that a bimodal distribution of the colony sizes can be a consequence of a difference in the cell 
proliferation rates in cell groups of different sizes that may arise from their interactions. It can be expected that 
colonies starting from larger groups grow faster, not only due to the initial conditions but the preference of cells 
to growth in close proximity to neighbours22,23. To capture the bimodal nature of the colony size distribution, we 
consider two populations, A and B, each with a different initial condition,

=





N
1, group A,
2, group B,0

Figure 1. (a) N(72) for each colony arranged in ascending order. The horizontal orange block shows the 
splitting of the data into two groups using K-means clustering. The split occurs between 29 ≤ N(72) ≤ 34. (b) A 
histogram of N(72) with kernel density estimates with bandwidths of 4.5 (orange) and 5.43 (auto bandwidth, 
blue dashed). The vertical orange block shows the splitting of the data into the two groups using K-means 
clustering. (c) Microscopy image of cells seeded at density n0 = 1200 cells/cm2. Most cells have no neighbours 
within the critical interaction distance of 150 μm (highlighted in blue), but some are in pairs (orange) and 
triples (green). The scale bar represents 100 μm. (d) Bar chart showing the initial cell seeding density (cells/cm2)  
at day zero (n0, unfilled bar height), and the mean cell density of the remaining cells attached to the plate at 
day one (η0, filled bars). Each mean is based on three independent measurements and the error bars represent 
standard deviations.
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where the probabilities for a colony to belong to groups A and B are α and β, respectively. Each population then 
follows Eq. (1) with its corresponding initial condition,

γ μ σ α

γ μ σ β







=

=

γ

γ

~

~

N t e

N t e

( ) , Norm( , ), with probability ,

( ) 2 , Norm( , ), with probability , (2)

t

t
A A A A

2

B B B B
2

A

B

and each of NA and NB has a lognormal probability distribution. Thus we consider separately colonies that origi-
nate from a single cell and those from cell pairs. We consider the possible role of cell triples and larger progenitor 
groups in the Discussion.

A lognormal mixture fit to the data, shown in Fig.  2a, gives . .~N (72) LogNorm(2 84,0 41 )A
2  and 

. .~N (72) LogNorm(3 76,0 13 )B
2 , with the mixture probabilities α = 0.77 and β = 0.23. Therefore, we have 

μA = 0.0394 h−1, σA = 0.0057 h−1, μB = 0.0426 h−1, and σB = 0.0018 h−1. A comparison between these growth 
parameter distributions is shown in Fig. 2b. These values correspond to a doubling time of 17.5 h for the single 
founder cell population (group A) and 16.3 h for the pairs of cells population (group B). Note that here we have 
assumed the growth rates for the two populations are different. Our fitting suggests colonies starting with two 
cells grow faster than their single cell counterparts, consistent with the idea that cells growing in larger colonies 
proliferate more effectively than isolated cells22,23. The fitting under the assumption of identical growth rates, 
γA = γB, is presented in the Supplementary Information, Fig. S2. The fitting does not capture the experimental 
data and so we conclude it is appropriate to continue assuming different growth rates for the two populations.

Modelling population growth. We have demonstrated how accurately the two-population model captures the 
experimental data at 72 hours. Now we proceed to develop it into a prognostic model for the colony size at later 
times. The evolution of the colony size, N(t), according to this two-population model is shown in Fig. 3. Because 
of the random scatter in the colony growth parameters the admissible range of colony size N(t) increases as t , 
and sooner or later, the size of the two colony types overlap. At early times, the sizes of the two colony types are 
distinct, where those beginning from two cells are larger than those from one founder cell, but as time progresses 
the stochasticity in the growth rates causes an overlap in the two populations. This overlap becomes more prom-
inent for larger numbers of simulations as this increases the incidence of extreme growth rate values. Histograms 
of N(20) and N(72) in Fig. 3b,d illustrate how at early times the two colony types are distinguishable but over time 
the distributions spread and merge to make single-clone colonies indistinguishable from heterogeneous colonies. 
The time at which NA first becomes equal to NB, t*, is the critical time after which it is not possible to distinguish 
which colonies originated from a single progenitor based on the colony size. This time is shown for increasing 
numbers of colonies in Fig. 4. As we increase the number of colonies, Ncols, we see more of the extreme values 
occurring with low probability, causing the blurring of the two populations to begin at an earlier time. The rela-
tionship is a power law, with the best fit t* = aNcols

−b with a = 77.9 ± 4.7 h and b = 0.12 ± 0.01 with an R2 coeffi-
cient of 0.98. This allows us to estimate, for a given plating cell density, the time up to which colonies originating 
from a single founder cell are identifiable based on the current number of cells in the colony.

Role of seeding density and cell clustering on the formation of homogeneous heSc colo-
nies. Typical low seeding densities for hESCs, intended to grow colonies from single founder cells, commonly 
range from 500 to 3000 cells/cm2. Across a range of seeding densities, we find that the average proportion of cells 
attached to the substrate after 24 hours is 35 ± 4%, where the range represents one standard deviation within the 
sample, and the accuracy of the mean value (the standard error) is ±1.0%, presented in Fig. 1d. For example, an 

Figure 2. (a) N(72) with a lognormal mixture model fitting corresponding to the two populations. The 
population fittings, . .~N (72) LogNorm(2 84,0 41 )A

2  with mixture probability 0.77 and 
. .~N (72) LogNorm(3 76,0 13 )B

2  with mixture probability 0.23 are shown in blue dashed, and the overall mixture 
distribution in orange. (b) The two γ distributions with group A in blue and group B in orange. Note that the 
distributions are not scaled to represent the group probabilities α and β. The inset shows the parameters for γ, μ 
with ±σ error bars for the initial conditions N0 = 1 and N0 = 2, corresponding to group A and group B, 
respectively. The dashed line shows the extrapolation of the trend to higher values of N0.
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initial seeding density of n0 = 1500 cells/cm2 results in around 500 cells continuing past day one of the experi-
ment. Throughout this section we will present the initial seeding densities n0 and work on the assumption that 
35% of these cells are successfully attached and survive, η0 = 0.35n0.

Figure 3. Evolution of N(t) from the two-population model for (a) 50 and (c) 5000 colonies, with blue NA(t) 
(N0 = 1) and orange NB(t) (N0 = 2). The insets show the corresponding plots of log(N(t)). Histograms of N(t) 
for (b) 50 and (d) 5000 colonies at t = 20 h and t = 72 h. Note that the distributions are unscaled to highlight the 
difference in the frequencies of each group, resulting from the difference in the population probabilities α = 0.77 
(blue population) and β = 0.23 (orange population).

Figure 4. The mean critical time, t* at which colonies originating from a single cell are no longer identifiable 
based on colony size, N(t). Each data point is the mean of 500 simulations. The error bars represent the standard 
deviations in the means. The data is well captured by a power law relation t* = aNcols

−b (orange line, R2 = 0.98); 
linear least-squares fitting on a log-log plot (inset) gives a = 77.9 ± 4.7 h and b = 0.12 ± 0.01.
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In this section we find the initial conditions corresponding to cell plating at different cell seeding densities 
and use this to inform the model for colony growth. The seeding of cells randomly across a growth area, A, can 
be simulated as a homogeneous Poisson point process in which the number of point counts is sampled from a 
Poisson distribution with the mean λA. The points are then independently and uniformly scattered across the 
region. For example, if we consider an initial seeding density of n0 = 1500 cells/cm2, we can simulate the seeding 
of η0 = 0.35n0 cells in a 1 cm2 area by a homogeneous point Poisson process in which the η0 point counts are 
sampled from Po(λA) where A = 1 cm2, and then locating cells according to the uniform distributions in x and y.

Once cells have been scattered, we can then consider the distances between cells and their nearest neighbours 
with the aim to estimate the fraction of isolated cells, their pairs (defined as two cells separated by less than 
150 μm) and triples etc. The probability density function of the distance, r, to the kth nearest neighbour is known 
from the theory of Poisson point processes as λπ= −−d r r e r k( ) 2( ) / ( 1)k

k lpr2 2 24. This reduces to 
πλ= −d r r e( ) 2 lpr

1
2 2

 for the first nearest neighbour. The theoretical distributions along with histograms from sim-
ulated data for d1(r) are shown in Fig. 5a for initial seeding densities of n0 = 500, 1500 and 5000 cells/cm2 corre-
sponding to λ = η0 = 0.35n0. These distributions allow us to calculate the proportion of seeded cells with the 
nearest neighbour at a given distance. The nearest neighbour cumulative distribution function for the proportion 
of cells with a nearest neighbour at a distance < r for a 2D homogeneous Poisson process is given by 

= − −D r e( ) 1 lpr
1

224. This theoretical proportion of cells with a first nearest neighbour less than r away, D1, for 
initial seeding densities n0 = 500, 1500 and 5000 cells/cm2 is shown in Fig. 5b along with data from a simulation 
at each seeding density. For the initial seeding density of n0 = 1500 cells/cm2 the nearest neighbour distance 
between cells will be less than 150 μm in around 30% of cases, similar to the experimental estimate of 23%. We 
have neglected the movement of cells as, based on observed migration speeds of approximately 16 μm/h14,  
the time required to traverse the critical interaction distance of 150 μm is around 9 h, a large portion of the cell 
cycle time.

To consider the groupings of seeded cells we use a density based clustering algorithm. Cells less than 150 μm 
apart are considered as being part of the same cluster, and any neighbouring cell less than 150 μm away from any 

Figure 5. (a) The probability distributions for the nearest neighbour distance in a Poisson point process, given 
by λπ= −d r re( ) 2 lpr

1
2
 for λ = η0 = 175 (blue, n0 = 500 cells/cm2), λ = η0 = 525 (orange, n0 = 1500 cells/cm2) and 

λ = η0 = 1750 (green, n0 = 5000 cells/cm2). The histograms show the simulated distributions for seeding cells 
according to a Poisson process with rate λ, each is for one run of the seeding simulation. (b) The theoretical 
proportion of cells with a nearest neighbour < d cmaway, = − λπ−D r e( ) 1 r

1
2
, for λ = η0 = 175 (blue dashed, 

n0 = 500 cells/cm2), λ = η0 = 525 (orange dashed, n0 = 1500 cells/cm2) and λ = η0 = 1750 (green dashed, 
n0 = 5000 cells/cm2). The corresponding solid lines show the values of D1 from a single run of the seeding 
simulation. (c) Example clustering configurations for cell triples with microscopy examples of these formations. 
The distance between cells, d, must be less than 150 μm. (d) The percentage of cells in a cluster of size n (for an 
interaction radius of 150 μm) for n = 1 (single cells, blue circles), n = 2 (pairs, orange diamonds), n = 3 (triplets, 
green square) and n = 4 (quadruples, pink open circles). The error bars represent standard deviations. Inset: The 
data on a log-log scale. The convergence to a linear relationship (and hence an exponential relationship for the 
non transformed data) can be seen.
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other cell in the cluster is also considered to be part of the cluster. This allows for clusters of elongated shapes. 
Note that this definition of a cluster of cells is non-trivial and has implications for the interactions of cells, but 
from the experimental images we see examples of clusters in elongated shapes as well as the more common reg-
ular shapes. Examples of different cluster formations for triples are shown in Fig. 5c. The proportion of cells in a 
cluster of a size n at different seeding densities is shown in Fig. 5d. At low initial seeding densities, e.g. n0 = 500 
cells/cm2 the majority of cells have no close neighbours. As the seeding density increases, the proportion of pairs 
of cells increases. The proportion of each cluster size first rises with n0 before reaching a maximum and then tends 
to zero as more possible cluster sizes become available. The distributions shown in Fig. 5 provide the initial con-
ditions corresponding to cell seeding at different densities.

Now the initial conditions of cell seeding are known, the growth of colonies from these cells can be considered. 
Cells are seeded at density n0 according to a Poisson point process as described above, and then the division of the 
cells and growth into colonies can be described by the two-population model. The area coverage of the plate can 
be estimated from the number of cells we expect to be present. The average area of a cell, Acell, is approximately 
250 μm2 [S. Orozco-Fuentes, private communication], corresponding to a cell diameter of 18 μm. The percentage 
of area covered by cells evolves as shown in Fig. 6a. Taking this value, the proportion of area coverage is the area 
covered by the cells, N(t)Acell, divided by the growth area of the plate and Aplate = Nseeded/n0. We therefore expect 
the percentage area coverage over time to tend to an exponential relationship due to the growth of N(t), scaled by 
a factor equal to n0Acell/Nseeded, as we see in Fig. 6a. The time taken for the growth area to be 100% covered, t100%, 
for varying initial seeding densities, is shown in Fig. 6b.

Simulating the initial conditions as described above and the colony growth allows us to estimate the crucial 
time at which the colonies begin to merge. The cells are seeded at density n0, with η0 cells attached, and are then 
sorted into clusters based on their spatial distances away from each other. Each cluster grows according to the 
two-population model, estimated as a circle with centre at the geometric centre of the cluster and radius based on 
the number of cells present, N(t). The growth rate for triples and larger clusters of cells is assumed to be the same 
as that for pairs of cells. The time at which any colony begins to merge with its neighbour is critical as the time 
that clonality is lost, τ, illustrated in Fig. 7a. The time the first colony merge occurs at varying seeding densities is 
shown in Fig. 7b, with least squares fitting τ = (−0.007 ± 0.0001)n0 + (102 ± 3) with R2 = 0.99, τ in hours and n0 
in cells/cm2. We are therefore able to estimate the time taken for the first colony merge to occur from the equation

τ
≈ − −

n
1 h

100
140 cm

,
(3)

0
2

where n0 is the initial seeding density of cells before attachment in cells/cm2 and τ is produced in hours. 
Experimental values were extracted for τ from Experiment 2 and the model captures these values within errors 
for the seeding densities 3000, 4000 and 7000 cells/cm2. These results are summarised in Table 1 for convenience. 
The results are also shown for extrapolated growth rates in Fig. 7b, under the assumption growth rates continue 
to increase with cluster size. The least squares fitting is τ = (−0.01 ± 0.001)n0 + (97 ± 4) with R2 = 0.99, τ in hours 
and n0 in cells/cm2. The increasing growth rates cause an earlier first merger time, particularly at the higher seed-
ing densities where larger clusters are more likely.

Discussion
Colony growth originating from single or pairs of cells is well modelled using a two-population stochastic expo-
nential model where the growth rate is sampled from a Normal distribution. Experimental results show that 
colonies that start from a single founder cell grow at a rate different from those originating from a cell pair, with 
a relative difference of 8 ± 1.8%. The colonies originating from pairs of cells have a higher mean growth rate 
(although it is within standard deviation errors of the growth rate for single cell colonies), and the standard devi-
ation of the growth rate for pairs is much lower, as seen in Fig. 2b.

Figure 6. (a) The percentage area coverage of cells at different time points for different cell seeding densities 
(blue 500 cells/cm2, orange 1000 cells/cm2, green 1500 cells/cm2 and pink 2000 cells/cm2) according to the 
two-population model. Inset: The data on a log-linear scale. (b) The time the growth area is 100% covered for 
varying cell seeding densities, with line of best fit t100% = 20n0

−0.15. Inset: The data on a log-log scale, with line of 
best fit log(t100%) = (−0.15 ± 0.005)log(n0) + (3.0 ± 0.04).
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Stem cells do not show any contact inhibition of proliferation which would slow colony growth, however, it 
is worth noting that there could be a trend in growth rates with respect to the ‘tightness’ of the cluster packing. 
It is likely that a triplet of cells in contact grows faster than a triplet where each cell is 150 μm apart, based on 
the evidence that stem cells proliferate more effectively in close proximity with each other22,23. It is likely that 
the growth rates are actually time dependent, so although we see a difference in the growth rates from single 
and paired founding state up to 72 h, we expect this difference to reduce and eventually become negligible over 
time. Similarly, we expect that the difference in growth rates between triples and other larger groups of founding 
cells also decrease as the cluster size increases. It is for this reason we set the growth rate for clusters of triples 
and larger groups to be the same as the growth rate for pairs. Allowing the growth rates to continue increasing 
with cluster size (extrapolated from the data) results in less time to the first colony merge, especially at the higher 
seeding densities where the probabilities of larger clusters is increased, Fig. 7c. Further experimental data would 
be needed to clarify the trends in growth rates for both increasing cluster size and cell separation distance within 
the cluster.

This model can be used to predict colony sizes at different time scales. We thus suggest that single clone col-
onies (that originate from a single founder cell) can be selected as the smaller of the growing colonies, but only 
within a certain period, t*, before colony sizes from a range of founder cells can be equivalent. This time gives an 
indication of when colonies should be observed to identify single founder cell colonies based on colony size. This 
time, t*, ranges from around 30 to 50 h depending on the seeding density.

Experimental results show that on average 35% of initially seeded cells are attached to the plate 24 hours after 
cell seeding, Fig. 1d. We take this into account when considering the initial conditions of cell seeding. It is thought 
that cells affect each other’s movement if they are less than 150 μm apart10. The nearest neighbour distributions for 

Figure 7. (a) Diagram illustrating initially seeded cells, and the colonies at time τ, the first time at which 
two growing colonies touch from a simulation of the cell seeding model. The orange cells are classed as a pair 
and grow accordingly. (b) An example of two colonies merging from experimental images. The two colonies, 
highlighted in blue and orange are beginning to merge together at 5 days. The scale bar represents 100 μm. (c) 
The mean time (averaged over 20 simulations) that the first colony merge occurs for cells seeded at different 
densities growing according to the two-population model. The time assuming the growth rates for clusters 
of three or above are the same as the growth rate for pairs is shown as blue circles with the line of best fit, 
τ = (−0.007 ± 0.001)n0 + (102 ± 3) with R2 = 0.99 in blue. The mean time using extrapolated growth rates for 
larger clusters is shown as orange squares with line of best fit τ = (−0.01 ± 0.001)n0 + (97 ± 4) with R2 = 0.99 
in orange. To test the prediction, experimental values of τ were extracted from Experiment 2 and are shown as 
green crosses. The error bars have been calculated through error propagation based on an error of ±0.5 days for 
each of the measured values due to the time resolution of the images.

Seeding 
density, n0 
(cells/cm2)

Attached cells, η0 
(cells/cm2)

Percentage of 
single cells

Time to 
first colony 
merge, τ (h)

1000 350 ± 42 78 ± 3 94 ± 3

1500 525 ± 63 70 ± 3 91 ± 3

2000 700 ± 86 62 ± 2 88 ± 4

3000 1050 ± 127 48 ± 1 80 ± 5

5000 1750 ± 212 30 ± 1 67 ± 6

Table 1. The expected number of attached cells, single cells at seeding and the time to the first colony merge for 
varying seeding densities.
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cells seeding according to a Poisson process, shown in Fig. 5, indicates that for a low seeding density of n0 = 1500 
cells/cm2 (i.e. around 500 attached cells) we would expect to see around 30% of cells with a nearest neighbour 
closer than the critical value d = 150 μm. However, our previous results suggest that we wouldn’t expect all these 
pairs to migrate towards each other and form colonies14. This critical separation distance may be affected by the 
cluster size of neighbouring colonies. Since the cellular communication is by inter-cellular signalling, it is likely 
reduced as neighbouring colony sizes increase. At higher seeding densities this individual cell migration is more 
likely to have an effect on the cell clustering at early times. However, as larger groups of cells in close contact form 
colonies, individual migration reduces to a negligible amount, meaning it is only a factor at early times. For large 
colonies there could be collective migration effects to consider. Further experiments are needed to quantify this 
movement, which could then be introduced into the model.

The initial clustering of cells is an important and non-trivial consideration with implications on cell com-
munications. We define a cluster to be a group of cells where each cell is 150 μm or closer to another cell in the 
cluster. This allows clusters of different structures, as illustrated in Fig. 5c. This random seeding process gives the 
proportion of cell clusters of different sizes presented in Fig. 5d. At low seeding densities up to ≈3000 cells/cm2, 
i.e. ≈1000 attached cells, single cells with no neighbours dominate, making up over 50% of cells present. As the 
seeding density increases the amount of single cells decreases, with the number of cells in pairs, triples and larger 
groups increasing (each proportion will always tend to zero as a wider variety of cluster sizes appear). This gives 
an indication of the seeding densities required to ensure a large proportion of the colonies originate from a single 
founder cell.

Following the population growth model we can also estimate the time to completely fill a growth area at dif-
ferent seeding densities, Fig. 6. A more interesting time to consider is the average time that growing colonies first 
merge due to physical proximity at different seeding densities, Fig. 7b. This time, τ, has a linear relationship with 
τ ≈ 100 − 0.007n0, allowing us to predict this time for any seeding density. This statistical estimation of τ suggests 
the latest possible observation time to catch colonies for re-plating before they merge.

Although developed here for a set of particular hESC experiments, the modelling framework can be applied 
more generally to other cell lines and hiPSCs, and experimental conditions to predict the critical timescales. 
These results can be used to inform cell seeding density choices to maximise clonal colonies and avoid those 
arising from more than one founder cell. Future work should explore the role of migrating cells and colonies of 
clonality and apply the model to hiPSCs.

Methods
Two types of experiment were carried out: Experiment 1 collected data on colony numbers at 72 hours 
post-attachment and Experiment 2 collected data on the rates of cell attachment and the time to colony merging.

Experiment 1: Human embryonic stem cells (WiCell, Madison WI) were plated at a density of 1500 cells/cm2 
onto 6-well plates coated with Matrigel® Basement Membrane Matrix (Corning Inc.), in the mTeSR1TM media 
(STEMCELL Technologies). The cells were stained with Cell Trace Violet Dye (Thermo Fisher). At 72 hours after 
cell attachment the cells were fixed and microscopy images (Nikon Eclipse Ti-E microscope) were taken of the 
colonies. Data was then collected using Imaris Image Analysis Software (BITPLANE Inc) to identify cell bound-
aries and count the number of cells in each colony. This data was extracted for 48 colonies.

Experiment 2: Following the same set-up as Experiment 1, the numbers of cells attached 24 hours after seed-
ing were recorded for different initial densities of 1000, 1200, 2000, 3000, 4000 and 7000 cells/cm2. Microscopy 
images were also taken of these wells each day for eight days for the initial seeding densities 1200, 3000, 4000 and 
7000 cells/cm2. The time the first colony merge occurred at each seeding density was extracted from examination 
of the images.

Data availability
The datasets generated during and analysed during the current study are available from the corresponding author 
on reasonable request.
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