12 research outputs found

    Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers

    Get PDF
    Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twentyfive patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2Mmutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2Mmutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer

    Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers

    Get PDF
    Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twenty-five patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2M-mutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2M-mutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer

    Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers

    No full text
    Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twentyfive patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2Mmutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2Mmutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer

    Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers

    No full text
    Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twentyfive patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2Mmutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2Mmutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer

    Hyaluronan in the Tumor Microenvironment

    No full text
    The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.Fil: Spinelli, Fiorella Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Vitale, Daiana Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Sevic, Ina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Alaniz, Laura Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentin
    corecore