20 research outputs found

    Minimizing drag in a moving boundary fluid-elasticity interaction

    No full text
    Our goal is to minimize the fluid vorticity in the case of an elastic body moving and deforming inside the fluid, using a distributed control. This translates into analyzing an optimal control problem subject to a moving boundary fluid–structure interaction (FSI). The FSI is described by the coupling of Navier–Stokes and wave equations. The control is inherently a nonlinear control, acting as feedback on the moving frame. Its action depends on the flow map of the domain, which is itself defined through the dynamics of the problem. A key ingredient in the optimal control problem is represented by the long time behavior of the forced dynamics, which was an open problem in the field. Our main results include existence of solutions for all times with small distributed sources and small initial data, as well as existence of optimal control for the problem of minimization of drag in the fluid

    On the role of compressibility in poroviscoelastic models

    No full text
    In this article we conduct an analytical study of a poroviscoelastic mixture model stemming from the classical Biot’s consolidation model for poroelastic media, comprising a fluid component and a solid component, coupled with a viscoelastic stress-strain relationship for the total stress tensor. The poroviscoelastic mixture is studied in the one-dimensional case, corresponding to the experimental conditions of confined compression. Upon assuming (i) negligible inertial effects in the balance of linear momentum for the mixture, (ii) a Kelvin-Voigt model for the effective stress tensor and (iii) a constant hydraulic permeability, we obtain an initial value/boundary value problem of pseudo-parabolic type for the spatial displacement of the solid component of the mixture. The dimensionless form of the differential equation is characterized by the presence of two positive parameters γ and η, representing the contributions of compressibility and structural viscoelasticity, respectively. Explicit solutions are obtained for different functional forms characterizing the boundary traction. The main result of our analysis is that the compressibility of the components of a poroviscoelastic mixture does not give rise to unbounded responses to non-smooth traction data. Interestingly, compressibility allows the system to store potential energy as its components are elastically compressed, thereby providing an additional mechanism that limits the maximum of the discharge velocity when the imposed boundary traction is irregular in time

    Parallel Sessions: Session 1

    No full text

    Minimizing drag in a moving boundary fluid-elasticity interaction

    No full text
    Our goal is to minimize the fluid vorticity in the case of an elastic body moving and deforming inside the fluid, using a distributed control. This translates into analyzing an optimal control problem subject to a moving boundary fluid–structure interaction (FSI). The FSI is described by the coupling of Navier–Stokes and wave equations. The control is inherently a nonlinear control, acting as feedback on the moving frame. Its action depends on the flow map of the domain, which is itself defined through the dynamics of the problem. A key ingredient in the optimal control problem is represented by the long time behavior of the forced dynamics, which was an open problem in the field. Our main results include existence of solutions for all times with small distributed sources and small initial data, as well as existence of optimal control for the problem of minimization of drag in the fluid
    corecore