388 research outputs found

    On the topology of nearly-integrable Hamiltonians at simple resonances

    Full text link
    We show that, in general, averaging at simple resonances a real--analytic, nearly--integrable Hamiltonian, one obtains a one--dimensional system with a cosine--like potential; ``in general'' means for a generic class of holomorphic perturbations and apart from a finite number of simple resonances with small Fourier modes; ``cosine--like'' means that the potential depends only on the resonant angle, with respect to which it is a Morse function with one maximum and one minimum. \\ Furthermore, the (full) transformed Hamiltonian is the sum of an effective one--dimen\-sio\-nal Hamiltonian (which is, in turn, the sum of the unperturbed Hamiltonian plus the cosine--like potential) and a perturbation, which is exponentially small with respect to the oscillation of the potential. \\ As a corollary, under the above hypotheses, if the unperturbed Hamiltonian is also strictly convex, the effective Hamiltonian at {\sl any simple resonance} (apart a finite number of low--mode resonances) has the phase portrait of a pendulum. \\ The results presented in this paper are an essential step in the proof (in the ``mechanical'' case) of a conjecture by Arnold--Kozlov--Neishdadt (\cite[Remark~6.8, p. 285]{AKN}), claiming that the measure of the ``non--torus set'' in general nearly--integrable Hamiltonian systems has the same size of the perturbation; compare \cite{BClin}, \cite{BC}

    Multimode, Aperiodic Terahertz Surface-Emitting Laser Resonators

    Get PDF
    Quasi-crystal structures are conventionally built following deterministic generation rules although they do not present a full spatial periodicity. If used as laser resonators, they open up intriguing design possibilities that are simply not possible in conventional periodic photonic crystals: the distinction between symmetric (vertically radiative but low quality factor Q) and anti-symmetric (non-radiative, high Q) modes is indeed here fully overcome, offering a concrete perspective of highly efficient vertical emitting resonators. We here exploit electrically pumped terahertz quantum cascade heterostructures to devise two-dimensional seven-fold quasi-crystal resonators, exploiting rotational order or irregularly distributed defects. By lithographically tuning the lattice quasi-periodicity and/or the hole radius of the imprinted patterns, efficient multimode surface emission with a rich sequence of spectral lines distributed over a 2.9–3.4 THz bandwidth was reached. We demonstrated multicolor emission with 67 mW of peak optical power, slope efficiencies up to ≈70 mW/A, 0.14% wall plug efficiencies and beam profile results of the rich quasi-crystal Fourier spectrum that, in the case of larger rotational order, can reach very low divergence

    Multiparametric Whole Blood Dissection: A one-shot comprehensive picture of the human hematopoietic system

    Get PDF
    Human hematopoiesis is a complex and dynamic system where morphologically and functionally diverse mature cell types are generated and maintained throughout life by bone marrow (BM) Hematopoietic Stem/Progenitor Cells (HSPC). Congenital and acquired hematopoietic disorders are often diagnosed through the detection of aberrant frequency or composition of hematopoietic cell populations. We here describe a novel protocol, called “Whole Blood Dissection” (WBD), capable of analyzing in a single test‐tube, hematopoietic progenitors and all major mature cell lineages composing either BM or peripheral blood (PB) through a multiparametric flow‐cytometry analysis. WBD allows unambiguously identifying in the same tube up to 23 different blood cell types including HSPC subtypes and all the major myeloid and lymphoid lineage compartments at different stages of maturation, through a combination of 17 surface and 1 viability cell markers. We assessed the efficacy of WBD by analyzing BM and PB samples from adult (n = 8) and pediatric (n = 9) healthy donors highlighting age‐related shift in cell composition. We also tested the capability of WBD on detecting aberrant hematopoietic cell composition in clinical samples of patients with primary immunodeficiency or leukemia unveiling expected and novel hematopoietic unbalances. Overall, WBD allows unambiguously identifying >99% of the cell subpopulations composing a blood sample in a reproducible, standardized, cost‐, and time‐efficient manner. This tool has a wide range of potential pre‐clinical and clinical applications going from the characterization of hematopoietic disorders to the monitoring of hematopoietic reconstitution in patients after transplant or gene therapy

    Successful selective arterial embolizations for bone metastases in renal cell carcinoma integrated with systemic therapies: A case report

    Get PDF
    the initial cytoreductive nephrectomy to 3 successive lines of medical treatment (sunitinib, everolimus, and sorafenib) and multiple locoregional treatments (spinal surgery, radiation therapy, and selective arterial embolization), resulting in a surprisingly long survival of over 75 months. In the era of target therapy, integration strategies, including additional locoregional treatment to medical therapy, are essential to optimize the clinical benefit, to maximize treatment duration overcoming focal progressive disease, and to improve the quality of life. In this context, we would highlight that selective transcatheter embolization of bone metastases from renal cell carcinoma should be considered as an effective and safe option in the palliative setting for patients with bone metastasis, especially for pain relief

    SDHC methylation in gastrointestinal stromal tumors (GIST): a case report

    Get PDF
    Gastrointestinal stromal tumors (GIST) recently have been recognized as a genetically and biologically heterogeneous disease. In addition to KIT or PDGFRA mutated GIST, mutational inactivation of succinate dehydrogenase (SDH) subunits has been detected in the KIT/PDGFRA wild-type subgroup, referred to as SDH deficient (dSDH). Even though most dSDH GIST harbor mutations in SDHx subunit genes, some are SDHx wild type. Epigenetic regulation by DNA methylation of CpG islands recently has been found to be an alternative mechanism underlying the lack of SDH complex in GIST

    Aspects of the planetary Birkhoff normal form

    Full text link
    The discovery in [G. Pinzari. PhD thesis. Univ. Roma Tre. 2009], [L. Chierchia and G. Pinzari, Invent. Math. 2011] of the Birkhoff normal form for the planetary many--body problem opened new insights and hopes for the comprehension of the dynamics of this problem. Remarkably, it allowed to give a {\sl direct} proof of the celebrated Arnold's Theorem [V. I. Arnold. Uspehi Math. Nauk. 1963] on the stability of planetary motions. In this paper, using a "ad hoc" set of symplectic variables, we develop an asymptotic formula for this normal form that may turn to be useful in applications. As an example, we provide two very simple applications to the three-body problem: we prove a conjecture by [V. I. Arnold. cit] on the "Kolmogorov set"of this problem and, using Nehoro{\v{s}}ev Theory [Nehoro{\v{s}}ev. Uspehi Math. Nauk. 1977], we prove, in the planar case, stability of all planetary actions over exponentially-long times, provided mean--motion resonances are excluded. We also briefly discuss perspectives and problems for full generalization of the results in the paper.Comment: 44 pages. Keywords: Averaging Theory, Birkhoff normal form, Nehoro{\v{s}}ev Theory, Planetary many--body problem, Arnold's Theorem on the stability of planetary motions, Properly--degenerate kam Theory, steepness. Revised version, including Reviewer's comments. Typos correcte
    • 

    corecore