1,055 research outputs found
Observation of Lyman-alpha emission in interplanetary space
The extraterrestrial Lyman-alpha emission was mapped by the OGO 5 satellite, when it was outside the geocorona. Three maps, obtained at different periods of the year, are presented and analyzed. The results suggest that at least half of the emission takes place in the solar system, and give strong support to the theory that in its motion toward the apex, the sun crosses neutral atomic hydrogen of interstellar origin, giving rise to an apparent interstellar wind
Atmospheric Lyman-Alpha Emissions (ALAE)
The Atmospheric Lyman-Alpha Emissions (ALAE) experiment which is designed to measure atomic hydrogen and deuterium in the terrestrial atmosphere is described. The development of the instrument is a joint effort of the Service d'Aeronomie du CNRS in France and the Institut d'Aeronomie Spatiale in Belgium. This experiment will be part of the atmospheric science research payload flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission planned for late 1990
Impact of micro-telluric lines on precise radial velocities and its correction
Context: In the near future, new instruments such as ESPRESSO will arrive,
allowing us to reach a precision in radial-velocity measurements on the order
of 10 cm/s. At this level of precision, several noise sources that until now
have been outweighed by photon noise will start to contribute significantly to
the error budget. The telluric lines that are not neglected by the masks for
the radial velocity computation, here called micro-telluric lines, are one such
noise source. Aims: In this work we investigate the impact of micro-telluric
lines in the radial velocities calculations. We also investigate how to correct
the effect of these atmospheric lines on radial velocities. Methods: The work
presented here follows two parallel lines. First, we calculated the impact of
the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum
by synthetic atmospheric spectra and evaluated the effect created by the
presence of the telluric lines. Then, we divided HARPS spectra by synthetic
atmospheric spectra to correct for its presence on real data and calculated the
radial velocity on the corrected spectra. When doing so, one considers two
atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS.
Results: We find that the micro-telluric lines can induce an impact on the
radial velocities calculation that can already be close to the current
precision achieved with HARPS, and so its effect should not be neglected,
especially for future instruments such as ESPRESSO. Moreover, we find that the
micro-telluric lines' impact depends on factors, such as the radial velocity of
the star, airmass, relative humidity, and the barycentric Earth radial velocity
projected along the line of sight at the time of the observation.Comment: Accepted in A&
A Wearable Machine Learning Solution for Internet Traffic Classification in Satellite Communications
International audienceIn this paper, we present an architectural framework to perform Internet traffic classification in Satellite Communications for QoS management. Such a framework is based on Machine Learning techniques. We propose the elements that the framework should include, as well as an implementation proposal. We define and validate some of its elements by evaluating an Internet dataset generated on an emulated Satellite Architecture. We also outline some discussions and future works that should be addressed to have an accurate Internet classification system
Io: IUE observations of its atmosphere and the plasma torus
Two of the main components of the atmosphere of Io, neutral oxygen and sulfur, were detected with the IUE. Four observations yield brightnesses that are similar, regardless of whether the upstream or the downstream sides of the torus plasma flow around Io is observed. A simple model requires the emissions to be produced by the interaction of O and S columns in the exospheric range with 2 eV electrons. Cooling of the 5 eV torus electrons is required prior to their interaction with the atmosphere of Io. Inconsistencies in the characteristics of the spectra that cannot be accounted for in this model require further analysis with improved atomic data. The Io plasma torus was monitored with the IUE. The long-term stability of the warm torus is established. The observed brightnesses were analyzed using a model of the torus, and variations of less than 30 percent in the composition are observed, the quantitative results being model dependent
Reduced in vitro susceptibility to artemisinin derivatives associated with multi-resistance in a traveller returning from South-East Asia
Decreased in vitro susceptibility to dihydroartemisinin (21.2 nM) and artesunate (16.3 nM) associated with decreased susceptibility or resistance to quinine (1131 nM), mefloquine (166 nM), lumefantrine (114 nM), pyronaridine (70.5 nM) and piperaquine (91.1 nM) is reported in a patient returning from South-East Asia after trekking along the Mekong from the south of Laos to the north of Thailand. Decreased in vitro susceptibility to artemisinin derivatives did not appear to be mediated by the number of copies of pfmdr1 or pfATPase6, pfcrt, pfmdr1 or pfmrp polymorphism. The high IC50 to mefloquine of this Asian isolate was not associated with pfmdr1 copy number. Pfnhe-1 microsatellite ms4760 showed a profile 7 (ms4760-7) with three repeats of DNNND and one repeat of DDDNHNDNHNN, which is associated with high quinine reduced susceptibility. The patient recovered in three days without relapse after treatment with the association of quinine and doxycycline. Decreased in vitro susceptibility to quinine and the delayed effect of doxycycline may both have contributed to the delayed parasite clearance time, D4 (0.5%) and D7 (0.004%). The in vitro data, with IC50 for dihydroartemisinin and artesunate were up to ten times those of the reference clone W2, which suggests that this isolate may be resistant to artemisinin derivatives, associated with a decreased susceptibility to quinine
First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument
GOMOS (Global Ozone Monitoring by Occultation of Stars), on board the European platform ENVISAT launched in 2002, is a stellar occultation instrument combining four spectrometers and two fast photometers which measure light at 1 kHz sampling rate in the two visible channels 470–520 nm and 650–700 nm. On the day side, GOMOS does not measure only the light from the star, but also the solar light scattered by the atmospheric molecules. In the summer polar days, Polar Mesospheric Clouds (PMC) are clearly detected using the photometers signals, as the solar light scattered by the cloud particles in the instrument field of view. The sun-synchronous orbit of ENVISAT allows observing PMC in both hemispheres and the stellar occultation technique ensures a very good geometrical registration. Four years of data, from 2002 to 2006, are analyzed up to now. GOMOS data set consists of approximately 10 000 cloud observations all over the eight PMC seasons studied. The first climatology obtained by the analysis of this data set is presented, focusing on the seasonal and latitudinal coverage, represented by global maps. GOMOS photometers allow a very sensitive PMC detection, showing a frequency of occurrence of 100% in polar regions during the middle of the PMC season. According to this work mesospheric clouds seem to be more frequent in the Northern Hemisphere than in the Southern Hemisphere. The PMC altitude distribution was also calculated. The obtained median values are 82.7 km in the North and 83.2 km in the South
- …