1,999 research outputs found
Genetic algorithms and the analysis of SnIa data
The Genetic Algorithm is a heuristic that can be used to produce model
independent solutions to an optimization problem, thus making it ideal for use
in cosmology and more specifically in the analysis of type Ia supernovae data.
In this work we use the Genetic Algorithms (GA) in order to derive a null test
on the spatially flat cosmological constant model CDM. This is done in
two steps: first, we apply the GA to the Constitution SNIa data in order to
acquire a model independent reconstruction of the expansion history of the
Universe and second, we use the reconstructed in conjunction with
the Om statistic, which is constant only for the CDM model, to derive
our constraints. We find that while CDM is consistent with the data at
the level, some deviations from CDM model at low redshifts
can be accommodated.Comment: 11 pages, 7 figures, to be published in the proceedings of the 14th
Conference on Recent Developments in Gravity (NEB-14), Ioannina, Greece, 8-11
June 201
The feedback between selection and demography shapes genomic diversity during coevolution
Species interactions and coevolution are integral to ecological communities, but we lack empirical information on when and how these interactions generate and purge genetic diversity. Using genomic time series data from host-virus experiments, we found that coevolution occurs through consecutive selective sweeps in both species, with temporal consistency across replicates. Sweeps were accompanied by phenotypic change (resistance or infectivity increases) and expansions in population size. In the host, population expansion enabled rapid generation of genetic diversity in accordance with neutral processes. Viral molecular evolution was, in contrast, confined to few genes, all putative targets of selection. This study demonstrates that molecular evolution during species interactions is shaped by both eco-evolutionary feedback dynamics and interspecific differences in how genetic diversity is generated and maintained
Effects of rapid prey evolution on predator-prey cycles
We study the qualitative properties of population cycles in a predator-prey
system where genetic variability allows contemporary rapid evolution of the
prey. Previous numerical studies have found that prey evolution in response to
changing predation risk can have major quantitative and qualitative effects on
predator-prey cycles, including: (i) large increases in cycle period, (ii)
changes in phase relations (so that predator and prey are cycling exactly out
of phase, rather than the classical quarter-period phase lag), and (iii)
"cryptic" cycles in which total prey density remains nearly constant while
predator density and prey traits cycle. Here we focus on a chemostat model
motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003]
with algae (prey) and rotifers (predators), in which the prey exhibit rapid
evolution in their level of defense against predation. We show that the effects
of rapid prey evolution are robust and general, and furthermore that they occur
in a specific but biologically relevant region of parameter space: when traits
that greatly reduce predation risk are relatively cheap (in terms of reductions
in other fitness components), when there is coexistence between the two prey
types and the predator, and when the interaction between predators and
undefended prey alone would produce cycles. Because defense has been shown to
be inexpensive, even cost-free, in a number of systems [Andersson and Levin
1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be
reproduced in other model systems, and in nature. Finally, some of our key
results are extended to a general model in which functional forms for the
predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure
A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms
The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the
simplest and most widely-studied supersymmetric extensions to the standard
model of particle physics. Nevertheless, current data do not sufficiently
constrain the model parameters in a way completely independent of priors,
statistical measures and scanning techniques. We present a new technique for
scanning supersymmetric parameter spaces, optimised for frequentist profile
likelihood analyses and based on Genetic Algorithms. We apply this technique to
the CMSSM, taking into account existing collider and cosmological data in our
global fit. We compare our method to the MultiNest algorithm, an efficient
Bayesian technique, paying particular attention to the best-fit points and
implications for particle masses at the LHC and dark matter searches. Our
global best-fit point lies in the focus point region. We find many
high-likelihood points in both the stau co-annihilation and focus point
regions, including a previously neglected section of the co-annihilation region
at large m_0. We show that there are many high-likelihood points in the CMSSM
parameter space commonly missed by existing scanning techniques, especially at
high masses. This has a significant influence on the derived confidence regions
for parameters and observables, and can dramatically change the entire
statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to
Sec. 3.4.2 in response to referee's comments; accepted for publication in
JHE
Disentangling the Benefits of Sex
In experiments with a facultatively sexual rotifer, populations adapting to novel environments evolve higher rates of sex because sexual mixing quickly assembles well-adapted genotypes
Energy dependence of Cronin momentum in saturation model for and collisions
We calculate dependence of Cronin momentum for and
collisions in saturation model. We show that this dependence is consistent with
expectation from formula which was obtained using simple dimentional
consideration. This can be used to test validity of saturation model (and
distinguish among its variants) and measure dependence of saturation
momentum from experimental data.Comment: LaTeX2e, 12 pages, 8 figure
Study of Tau-pair Production in Photon-Photon Collisions at LEP and Limits on the Anomalous Electromagnetic Moments of the Tau Lepton
Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using
data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000.
The corresponding integrated luminosity is 650 pb^{-1}. The values of the
cross-section obtained are found to be in agreement with QED predictions.
Limits on the anomalous magnetic and electric dipole moments of the tau lepton
are deduced.Comment: 20 pages, 9 figures, Accepted by Eur. Phys. J.
A Precise Measurement of the Tau Lifetime
The tau lepton lifetime has been measured with the e+e- -> tau+tau- events
collected by the DELPHI detector at LEP in the years 1991-1995. Three different
methods have been exploited, using both one-prong and three-prong tau decay
channels. Two measurements have been made using events in which both taus decay
to a single charged particle. Combining these measurements gave tau_tau (1
prong) = 291.8 +/- 2.3 (stat) +/- 1.5 (sys) fs. A third measurement using taus
which decayed to three charged particles yielded tau_tau (3 prong) = 288.6 +/-
2.4 (stat) +/- 1.3 (sys) fs. These were combined with previous DELPHI results
to measure the tau lifetime, using the full LEP1 data sample, to be tau_tau =
290.9 +/- 1.4 (stat) +/- 1.0 (sys) fs.Comment: 27 pages, 7 figure
Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP
An experimental study of the normalized three-jet rate of b quark events with
respect to light quarks events (light= \ell \equiv u,d,s) has been performed
using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by
the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are
found to agree with theoretical predictions treating mass corrections at
next-to-leading order. Measurements of the b quark mass have also been
performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data
are found to be better described when using the running mass. The measurement
yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12
(theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise
measurement of the b mass derived from a high energy process. When compared to
other b mass determinations by experiments at lower energy scales, this value
agrees with the prediction of Quantum Chromodynamics for the energy evolution
of the running mass. The mass measurement is equivalent to a test of the
flavour independence of the strong coupling constant with an accuracy of 7
permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.
Study of Inclusive J/psi Production in Two-Photon Collisions at LEP II with the DELPHI Detector
Inclusive J/psi production in photon-photon collisions has been observed at
LEP II beam energies. A clear signal from the reaction gamma gamma -> J/psi+X
is seen. The number of observed N(J/psi -> mu+mu-) events is 36 +/- 7 for an
integrated luminosity of 617 pb^{-1}, yielding a cross-section of
sigma(J/psi+X) = 45 +/- 9 (stat) +/- 17 (syst) pb. Based on a study of the
event shapes of different types of gamma gamma processes in the PYTHIA program,
we conclude that (74 +/- 22)% of the observed J/psi events are due to
`resolved' photons, the dominant contribution of which is most probably due to
the gluon content of the photon.Comment: 13 pages, 8 figures, Accepted by Phys. Lett.
- …