245 research outputs found

    The two facets of species sensitivity: stress and disturbance on coralligenous assemblages in space and time.

    Get PDF
    Marine coastal ecosystems are affected by a vast array of human-induced disturbances and stresses, which are often capable of overwhelming the effects of natural changes. Despite the conceptual and practical difficulty in differentiating between disturbance and stress, which are often used interchangeably, the two terms bear different ecological meanings. Both are external agents, but the former causes mortality or physical damage (subtraction of biomass), whereas the latter causes physiological alteration (reduction in productivity). Sensitivity of marine organisms may thus have a dual connotation, being influenced in different ways by disturbance and by stress following major environmental change. Coralligenous assemblages, which shape unique biogenic formations in the Mediterranean Sea, are considered highly sensitive to change. In this paper, we propose a method to differentiate between disturbance and stress to assess the ecological status of the coralligenous assemblages. Disturbance sensitivity level (DSL) and stress sensitivity level (SSL) of the sessile organisms thriving in the coralligenous assemblages were combined into the integrated sensitivity level of coralligenous assemblages (ISLA) index. Changes in the coralligenous status were assessed in space, along a gradient of stress (human-induced pressures) at several sites of the western Mediterranean, and in time, from a long-term series (1961\u20132008) at Mesco Reef (Ligurian Sea) that encompasses a mass mortality event in the 1990s. The quality of the coralligenous assemblages was lower in highly urbanised sites than that in sites in both marine protected areas and areas with low levels of urbanisation; moreover, the quality of the assemblages at Mesco Reef decreased during the last 50 years. Reduction in quality was mainly due to the increase in stress-tolerant and/or opportunist species (e.g. algal turfs, hydroids and encrusting sponges), the disappearance of the most sensitive macroalgae (e.g. Udoteaceae and erect Rhodophyta) and macro-invertebrates (e.g. Savalia savaglia, Alcyonium coralloides and Smittina cervicornis), and the appearance of invasive alien algal species. Although the specific indices of SSL or DSL well illustrated the changes in the spatial or temporal datasets, respectively, their integration in the ISLA index was more effective in measuring the change experienced by the coralligenous assemblages in both space and time

    The influence of the rock mineralogy on population density of Chthamalus (Crustacea: Cirripedia) in the Ligurian Sea (NW Mediterranean Sea)

    Get PDF
    Settlement, recruitment and survival of sessile marine species are driven by many biotic and abiotic factors. Among them, substrate mineral composition is generally a neglected topic, despite it proved to be a relevant contributing variable in driving the structure of benthic communities. Thanks to their ecology, Chthamalus species are a good proxy to test the role of substrate in affecting settlement and final population density on exposed rocky shores. Differences in the number of individuals were analysed in eight localities along the Eastern Ligurian Riviera (north-western Mediterranean Sea), from Portovenere to Manara Cape. In this sector of the Ligurian littoral, the coast is constituted by different rocks characterised by variable concentrations of calcite, silicates and quartz. This situation constitutes an ideal setting to evaluate the influence of mineral composition of the rocks in structuring the epilithic macrobiota communities in energetic splash zones and under similar physical pressures. Rocks rich in calcites turned out to be more suitable for Chthamalus species than substrates containing high amounts of silicates, and of quartz in particular. Additionally, also the grain size of the main mineral component of the rocks, determining in turn the surface roughness seemed to influence barnacle densities, with a significant preference for finer-grained substrates

    The cold-water coral province of the eastern Ligurian Sea (NW Mediterranean Sea): historical and novel evidences

    Get PDF
    Several bathyal cold-water coral provinces, characterized by a lush growth of habitat-forming scleractinians, have been recognized in the Mediterranean Sea. However, the search for this biogenic habitat only marginally targeted the Italian coast of the Ligurian Sea (NW Mediterranean basin) despite historical and a few recent local studies in the region reporting the presence of corals. This study used bathymetry maps, side-scan sonar profiles, historical charts, and trawling routes to identify sites that could potentially host coral habitats in the eastern sector of the Ligurian Sea. Remotely operated vehicle video footage from various projects (2015-2021, 20 dives) was then used to characterize four sub-areas (Genoa Plateau, Portofino, Deiva Marina, and Monterosso) where corals were detected between 450 m and 750 m depth. Radiocarbon dating was used to trace back the geological history of the coral structures. A small coral mound, impacted by trawling activities, was found on the Genoa Plateau, while four massive coral structures were found in the other sub-areas, mainly located in a morphologically complex and highly energetic canyon region. High levels of megafaunal biodiversity, including rarely reported alcyonaceans as Placogorgia coronata, were observed together with moderate fishing impact. Overall, the identified coral areas potentially account for 9 km(2) of both subfossil mounds (as old as 13300 years BP), dominated by Desmophyllum pertusum, and living reefs, dominated by Madrepora oculata, the latter representing up to 23% of the substrate coverage. The few living colonies of D. pertusum in the area represent the first documented records for the Ligurian Sea. These data support the presence of a distinct eastern Ligurian cold-water coral province

    The paleo-community of the Sciacca red coral

    Get PDF
    The sub-fossil red coral deposits of Sciacca (Sicily Channel) have attracted scientific attention for nearly 150 years. Their origin and formation have been long questioned and investigated, given the fact that they represent one of the most intriguing geobiological events ever to occur in the Mediterranean basin. Less attention was given to the paleo-community associated with the sub-fossil coral. Radiocarbon age determinations, in particular, were provided only for red coral, neglecting the possibility of understanding which species were simultaneously present in the coralline paleo-community and which was their role. The study of cemented coral rubble pieces revealed that Corallium rubrum covered the largest time interval (more than 3000 years) and was contemporary to many secondary epibionts over two millennia and to Madrepora oculata for about 500 years; this last finding suggested that an uncommon co-dominance between the two structuring species occurred in the nearby living communities. The lack of Fe-Mg deposits on the cemented coral rubbles coupled with the low bioerosion rate of the red coral skeletons by the demosponge Siphonodictyon coralliirubri (assessed through the analysis of the erosive paleo-scars) suggested that the deposits met with a rapid sediment cover-up. Moreover, for the first time, the analysis of a piece of cemented coral rubble of sub-fossil red coral coming from Sardinian waters confirmed that, albeit to a lesser extent, the conditions favouring the preservation of dead corals can occur also in different localities far from Sciacca

    Comparison between the sponge fauna living outside and inside the coralligenous bioconstruction. A quantitative approach

    Get PDF
    Coralligenous habitat results from a multi-stratified accumulation of crustose coralline algae and animal builders in a dynamic equilibrium with disruptive agents. The result is a complex architecture crossed by crevices and holes. Due to this three-dimensional structure, coralligenous may host a rich and diversified fauna, more abundant than any other Mediterranean habitat. Unfortunately, very few data are available about the cryptic fauna that lives inside the conglomerate. As already reported for coral reefs, the cryptic fauna plays an important role in the exchange of material and energy between water column and benthic assemblages. Here we compare the sponge community present inside and outside the coralligenous framework of Portofino Promontory (Ligurian Sea) at different depths (15 and 30 meters) not only in terms of taxonomic diversity but for the first time also in term of biomass. Sponges present on the surface of each block were collected, weighed and identified; after blocks dissolution in HCl, target cryptic sponges were separated from other organisms, weighed, and identified. We recorded a total of 62 sponge species. The average number of sponge taxa occurring outside the coralligenous accretions is lower than the number of taxa identified inside. This pattern is confirmed also regarding sponge biomass. These results underlines that studies focused on coralligenous functioning should take in account the important contribution of cryptic fauna, as recently evidenced also for tropical reef habitats

    The sub-fossil red coral of Sciacca (Sicily Channel, Mediterranean Sea): colony size and age estimates

    Get PDF
    The Mediterranean red coral, Corallium rubrum (L.), has been a valuable economic resource for more than 2000 years. The Sicily Channel and surrounding areas are one of the most famous red coral fishing grounds of the whole region, hosting the deepest ever found living colonies and large sub-fossil red coral deposits; the so-called Sciacca banks are a unique location in the whole Mediterranean Sea. In this paper, a morphometric description of this sub-fossil population is presented for the first time from studies of colonies in the collection of several coral factories from Torre del Greco (Naples), with radiocarbon age estimations and growth rate evaluations. From the results of this study, after several thousand years Sciacca red coral colonies maintained the organic matrix structure with evident annual discontinuities, allowing estimations of the annual growth rate (about 0.3 mm/year) and the average population age (about 33.5 years). These resulting data are similar to the values determined for deep-dwelling living red coral populations. The radiocarbon dating evidenced a range of ages, from 8300 to 40 years before 1950 CE, mostly falling between 2700 and 3900 YBP, suggesting that colonies accumulated over a wide span of time. In view of the tectonically active nature of the area, several catastrophic events affected these ancient populations, maintaining them in a persistent state of early-stage, structurally similar to the those in current over-exploited areas

    Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardinia)

    Get PDF
    Leiopathes glaberrima is a tall arborescent black coral species structuring important facies of the deep-sea rocky bottoms of the Mediterranean Sea that are severely stifled by fishing activities. At present, however, no morphological in vivo description, ecological characterization, age dating and evaluation of the possible conservation actions have ever been made for any population of this species in the basin. A dense coral population was reported during two Remotely Operated Vehicle (ROV) surveys conducted on a rocky bank off the SW coasts of Sardinia (Western Mediterranean Sea). L. glaberrima forms up to 2 m-tall colonies with a maximal observed basal diameter of nearly 7 cm. The radiocarbon dating carried out on a colony from this site with a 4 cm basal diameter revealed an approximately age of 2000 years. Considering the size-frequency distribution of the colonies in the area it is possible to hypothesize the existence of other millennial specimens occupying a supposedly very stable ecosystem. The persistence of this ecosystem is likely guaranteed by the heterogeneous rocky substrate hosting the black coral population that represents a physical barrier against the mechanical impacts acted on the surrounding muddy areas, heavily exploited as trawling fishing grounds. This favorable condition, together with the existence of a nursery area for catsharks within the coral ramifications and the occurrence of a meadow of the now rare soft bottom alcyonacean Isidella elongata in small surviving muddy inclaves, indicates that this ecosystem have to be considered a pristine Mediterranean deep-sea coral sanctuary that would deserve special protection

    Basin-scale occurrence and distribution of mesophotic and upper bathyal red coral forests along the Italian coasts

    Get PDF
    The analysis of 879 ROV dives carried out along the Italian coasts on hard substrata at mesophotic and upper bathyal depths (40-775 m) allowed us to evaluate the current basin-scale presence, relative abundance, bathymetric limits, and habitat preferences of one of the most charismatic Mediterranean habitat-former anthozoan species, Corallium rubrum (Linnaeus, 1758). The species is widespread, and its occurrence ranged from 13% of the explored sites in Ionian Calabria to a hotspot of approximately 80% in Sardinia. Population relative densities were generally low (< 10 colonies m-2), except along the Sardinian coasts and in some areas along the Apulian coast. Almost no red coral colonies were observed between 60 m and 590 m in the nine explored offshore seamounts in the Ligurian and Tyrrhenian Seas. A distinctive coastal distribution discontinuity was found in the Ionian Sea. The optimum bathymetric distribution was between 75 m and 125 m, and no colonies were found below 247 m. Red coral colonies showed a preference for biogenic habitats dominated by crustose coralline algae (CCA) and vertical substrata. The species was absent on iron wrecks. Corallium rubrum disappeared from 14% of the historical fishing banks, while it was confirmed in 86% of them, some of which have been deeply harvested in the past. In particular, the still flourishing Sardinian populations could be supported by the high reproductive potential and favourable hydrodynamic conditions in the area

    Biodiversity of Prokaryotic Communities Associated with the Ectoderm of Ectopleura crocea (Cnidaria, Hydrozoa)

    Get PDF
    The surface of many marine organisms is colonized by complex communities of microbes, yet our understanding of the diversity and role of host-associated microbes is still limited. We investigated the association between Ectopleura crocea (a colonial hydroid distributed worldwide in temperate waters) and prokaryotic assemblages colonizing the hydranth surface. We used, for the first time on a marine hydroid, a combination of electron and epifluorescence microscopy and 16S rDNA tag pyrosequencing to investigate the associated prokaryotic diversity. Dense assemblages of prokaryotes were associated with the hydrant surface. Two microbial morphotypes were observed: one horseshoe-shaped and one fusiform, worm-like. These prokaryotes were observed on the hydrozoan epidermis, but not in the portions covered by the perisarcal exoskeleton, and their abundance was higher in March while decreased in late spring. Molecular analyses showed that assemblages were dominated by Bacteria rather than Archaea. Bacterial assemblages were highly diversified, with up to 113 genera and 570 Operational Taxonomic Units (OTUs), many of which were rare and contributed to <0.4%. The two most abundant OTUs, likely corresponding to the two morphotypes present on the epidermis, were distantly related to Comamonadaceae (genus Delftia) and to Flavobacteriaceae (genus Polaribacter). Epibiontic bacteria were found on E. crocea from different geographic areas but not in other hydroid species in the same areas, suggesting that the host-microbe association is species-specific. This is the first detailed report of bacteria living on the hydrozoan epidermis, and indeed the first study reporting bacteria associated with the epithelium of E. crocea. Our results provide a starting point for future studies aiming at clarifying the role of this peculiar hydrozoan-bacterial association

    “Ten Commandments” for the Appropriate use of Antibiotics by the Practicing Physician in an Outpatient Setting

    Get PDF
    A multi-national working group on antibiotic stewardship, from the International Society of Chemotherapy, put together ten recommendations to physicians prescribing antibiotics to outpatients. These recommendations are: (1) use antibiotics only when needed; teach the patient how to manage symptoms of non-bacterial infections; (2) select the adequate ATB; precise targeting is better than shotgun therapy; (3) consider pharmacokinetics and pharmacodynamics when selecting an ATB; use the shortest ATB course that has proven clinical efficacy; (4) encourage patients’ compliance; (5) use antibiotic combinations only in specific situations; (6) avoid low quality and sub-standard drugs; prevent prescription changes at the drugstore; (7) discourage self-prescription; (8) follow only evidence-based guidelines; beware those sponsored by drug companies; (9) rely (rationally) upon the clinical microbiology lab; and (10) prescribe ATB empirically – but intelligently; know local susceptibility trends, and also surveillance limitations
    corecore