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Abstract
Settlement, recruitment and survival of sessile marine species are driven by many biotic and abiotic factors. Among them,
substrate mineral composition is generally a neglected topic, despite it proved to be a relevant contributing variable in
driving the structure of benthic communities. Thanks to their ecology, Chthamalus species are a good proxy to test the role
of substrate in affecting settlement and final population density on exposed rocky shores. Differences in the number of
individuals were analysed in eight localities along the Eastern Ligurian Riviera (north-western Mediterranean Sea), from
Portovenere to Manara Cape. In this sector of the Ligurian littoral, the coast is constituted by different rocks characterised
by variable concentrations of calcite, silicates and quartz. This situation constitutes an ideal setting to evaluate the influence
of mineral composition of the rocks in structuring the epilithic macrobiota communities in energetic splash zones and
under similar physical pressures. Rocks rich in calcites turned out to be more suitable for Chthamalus species than
substrates containing high amounts of silicates, and of quartz in particular. Additionally, also the grain size of the main
mineral component of the rocks, determining in turn the surface roughness seemed to influence barnacle densities, with
a significant preference for finer-grained substrates.
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Introduction

Changes and stability in spatial distribution, settle-
ment, recruitment and density of marine sessile spe-
cies are driven by a plethora of abiotic variables,
which, in turn, interact with the biological ones
(Dayton 1971; Keough & Downes 1982;
Underwood et al. 1983, 1984; Connell 1985;
Menge & Sutherland 1987; Barry & Dayton 1991;
Pawlik 1992; Raffaelli & Hawkins 1996; Smith &
Witman 1999; Benedetti-Cecchi et al. 2000; Sousa
2001; Menge & Branch 2001; Asnaghi et al. 2015).
All these variables operate synergistically with differ-
ent intensities, on different space and time scales.
Among the main abiotic factors, that can favour or
inhibit species settlement, the mineralogy of the

substrate has been only sporadically considered.
On the other hand, it has been observed that free
larvae of sessile organisms show an unsuspected
ability to recognize and select different rocky sub-
strates, with important repercussions on the com-
munity structure (Cerrano et al. 1999; Bavestrello
et al. 2000, 2018; Cattaneo-Vietti et al. 2002;
Guidetti et al. 2004; Calcinai et al. 2008).
In order to evaluate the influence of substrate

mineralogy on larval settlement, the upper rocky
shore is among the most suitable habitats, thanks
to the fact that the influence of the microbial film
is often low or absent (Bertness et al. 2001; Maggi
et al. 2017), so that the interaction between larvae
and rocks is more direct.
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Barnacles are considered key species of these upper
rocky shore communities; therefore, they represent a
good model thanks to their high recruitment, mid-long
larval dispersive phase (11–30 days) and a lifespan of 2–
3 years (Southward & Crisp 1956). Studies about their
biology and ecology (Moore & Kitching 1939;
Southward 1967, 1976, 1991; Levinton 1982;
Underwood et al. 1983, 1984; Caffey 1985; Moore &
Seed 1985; Benedetti-Cecchi et al. 2000; Bertness et al.
2001; Underwood&Keough 2001), dispersal (Crisp &
Southward 1958;Grosberg 1982), settlement (Larmon
&Gabbott 1975;Crisp et al. 1981;Hawkins&Hartnoll
1982, 1983;Gaines et al. 1985;Gaines&Roughgarden
1985), recruitment and gregariousness (Lewis 1964;
Underwood & Fairweather 1989; Sutherland 1990;
Lively et al. 1993; Southward et al. 1995; O’Riordan
et al. 2004 and references therein; Jenkins et al. 2000;
Jenkins 2005), as well as competition and predation
processes (Dungan 1985; Lively 1986a, 1986b; Lively
&Raimondi 1987; Fairweather 1988;Raimondi 1988a,
1988b;Wahl 2009) have beenwidely explored topics in
marine coastal ecology.
Some substrate features, such as exposure, slope,

surface heterogeneities and roughness have been
invoked as causal factors influencing barnacle aggre-
gation at small spatial scales (Knight-Jones 1953;
Crisp & Barnes 1954; Crisp 1974, 1976; Denley &
Underwood 1979; Paine & Levin 1981; Wethey
1986; Raimondi 1990; Lively et al. 1993; Bourget
et al. 1994; Hills & Thomason 1996, 1998; Lemire
& Bourget 1996; Lapointe & Bourget 1999; Davis
2009). For example, in energetic splash zones, bar-
nacles survive better in crevices, avoiding adjacent
horizontal surfaces, where the mechanical stresses
and the risk of desiccation are greater (Foster 1971;
Bergeron & Bourget 1986; Chabot & Bourget 1988;
Menge & Branch 2001). Additionally, the presence
of a biofilm (in terms of thickness, composition and
age) is known to be an important variable in influen-
cing larval settlement, although with contradictory
data (Barnes 1956; Holmström et al. 1992; Walters
& Wethey 1996; Wieczorek et al. 1996; Thompson
et al. 1998; Wieczorek & Todd 1998; Olivier et al.
2000; Faimali et al. 2004; Hadfield 2011). Other
variables affecting barnacle settling are related strictly
to lithology of the substratum and include the
mineral composition of the rock and its thermal capa-
city, colour and surface energy (Lewis 1977; Yule &
Walker 1984; Wethey 1986; Le Tourneux & Bourget
1988; Holmes et al. 1997; Berntsson et al. 2000,
2004; Herbert & Hawkins 2006).
The barnacles Chthamalus stellatus (Poli, 1791) and

Chthamalus montagui Southward, 1976 are the com-
monest sessile invertebrates living in the supra- and

midlittoral rocky shores of the NW Mediterranean
Sea, forming characteristic belts which can reach den-
sities of up to 30,000 individuals m−2 (Pannacciulli &
Relini 2000) (Figure 1(a-c)).
In the Ligurian Sea, the vertical distributions of

these two species overlap; nevertheless, C. stellatus is
generally more abundant in the upper level. A third
species, Euraphia depressa (Poli, 1791), also occurs,
generally living higher up in crevices and shades, but
it is rarely present in the main barnacle zone on
exposed shores (Pannacciulli & Relini 2000).
Chthamalus spp. appear good models to assess the

role of substrata mineral composition in determining
settlement and recruitment of sessile invertebrates.
Moreover, Bavestrello et al. (2018) have observed
that the density of C. stellatus was very different on
two neighbouring ophiolitic outcrops dip into the
sea under similar environmental conditions but
showing different silica concentrations.
The aim of this study was to test the effect of rock

mineral composition on the density of the adult
Chthamalus at two levels of the splash zone, in
some neighbouring localities of the Eastern
Ligurian Sea, characterised by different mineral
compositions of the rock substrata (Figure 2).
Considering the strong differences in calcite, sili-
cates and quartz concentrations present in the
rocks of this littoral sector, the selected localities
may be considered an ideal study area to evaluate
the putative contribution of substrata mineral com-
position in influencing barnacle population and,
from a more general point of view, the structure of
the splash zone communities.

Material and methods

Geological context

The characteristics of the Chthamalus belt in terms
of population density were studied by photographic
samplings during summer 2017 in eight selected
localities, along 35 km of coastline (eastern
Ligurian Riviera) from Portovenere, near the Gulf
of La Spezia, to Manara Cape (Sestri Levante)
(Table I; Figure 2).
These localities were selected according to the

mineral composition of the substrate, inferred from
the regional geological map (Carta Geologica
d’Italia 2005).
Three localities (Portovenere Castle (Pc),

Portovenere Byron Cave (Pbc) and Portovenere
East (PE)) are characterized by limestones; the site
Portovenere West (PW) shows a red jasper forma-
tion; Vernazza (Ve) presents a quartzitic substratum;
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ophiolites outcrop occur at Bonassola (Bo) and
Framura (Fr) (metagabbros and basalt, respec-
tively); finally, a carbonatic marl outcrop is present
at Manara Cape (Ma).

Petrographic analysis

The lithotypes of the different localities were
sampled and investigated as thin sections under
polarized light microscopy, and by Scanning
Electron Microscopy coupled with Energy
Dispersive X-ray Spectrometry (SEM-EDS).
The percentages of the major components (SiO2

and CaO) within the analysed rock substrates were
quantified by Lithium Metaborate/Tetraborate
Fusion followed by Inductively Coupled Plasma
Mass Spectrometry (ICP/MS) at the ActLabs
Laboratories (Ontario, Canada). Three blanks and
five controls (three before the sample group and two
after) were analysed per group of samples.
Duplicates were fused and analysed every 15 sam-
ples. Instruments were recalibrated every 40
samples.
Thin sections were observed under a transmitted

polarised light optical microscopy to measure crystal

diameters and mineral phase percentages by volume
inside rock samples.

Sampling design and statistical analysis

To evaluate the barnacle density, at each locality, 10
photographs of 20 × 20 cm of the standard surface
were taken along a horizontal transect at two levels
(+1 m, upper splash zone and +0.2 m, lower splash
zone) with the rocky coast showing comparable
slope and wave-exposure.
In this way, a total of 160 photos were collected

and analysed using the Software package
ImageJ64®. The number of Chthamalus shells was
recorded and related to 1 m2 (Table I).
Considering that, along the Ligurian coast,

C. stellatus and C. montagui are widely mixed
(Pannacciulli & Relini 2000) the two species were
considered together in the analysed images.
Two-way Analysis of Variance (ANOVA) was car-

ried out to test for differences in average barnacle
density related to 20 × 20 cm surface between local-
ities (data distributed homogenously with n = 160,
Shapiro-Wilk W p = 1.542e-13). Tested factors
(“Locality” and “Height” of the splash zone) were
fixed and orthogonal.

Figure 1. (a-c) Different close-ups of a dense Chthamalus belt along the upper splash zone of a rocky shore of the eastern Ligurian Riviera.
(d) Specimens of Chthamalus sp. cut transversally to evidence lack of the carbonatic basal plate. Scale bars: a= 50 cm; b = 5 mm; c = 10
cm; d = 5 mm.
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Figure 2. (a) Sampling area along the Ligurian coast. (b) Lithological map, redrawn after the Regional Geological Map, 1:50.000 of the
eastern Ligurian Riviera with the eight sampled localities. Ma: Manara Cape; Fr: Framura; Bo: Bonassola; Ve: Vernazza; PE: Portovenere
E; PW: Portovenere W; Pbc: Portovenere Byron Cave; Pc: Portovenere Castle.

Table I. Lithology and barnacle density in the upper and lower splash zone in the explored localities along the Eastern Ligurian coastline.

Localities Lithotype

Coordinates
(WGS84)

Average density
(ind m−2) ± SE

Lat Long Upper splash zone Lower splash zone

Pc Portovenere Castle Limestone 44° 2ʹ53.47''N 9°49ʹ55.57''E 20,275 ± 1980 6,605 ± 1,022
Pbc Portovenere Byron Cave Limestone 44° 2ʹ56.48''N 9°49ʹ57.70''E 28,317 ± 5740 10,295 ± 1,942
PE Portovenere East Limestone 44° 3ʹ24.36''N 9°49ʹ25.30''E 34,670 ± 1920 4,445 ± 632
PW Portovenere West Jasper 44° 3ʹ48.85''N 9°48ʹ27.88''E 3,780 ± 582 1,955 ± 461
Ve Vernazza Quartzites 44° 8ʹ8.90''N 9°40ʹ57.07''E 6,150 ± 1166 4,572 ± 740
Bo Bonassola Ophiolites

(Metagabbro)
44°10ʹ48.34''N 9°35ʹ3.72''E 2,320 ± 381 4,390 ± 1,280

Fr Framura Ophiolites
(Basalt)

44°11ʹ59.64''N 9°33ʹ20.50''E 16,560 ± 2378 8,612 ± 2,504

Ma Manara Cape Marl 44°15ʹ22.78''N 9°24ʹ41.94''E 19,332 ± 3454 1,017 ± 2,938
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Tukey’s test was used to ascertain the significance
in pairwise comparisons for each locality-height
paired variable. Correlations between average den-
sity and CaO and SiO2 percent concentrations and
diameter of crystals of the main component in rocky
samples were investigated by regression plots
(Figures 3 and 5).

Results

Along the western Mediterranean coastline, from
Portovenere (La Spezia) to Manara Cape (Sestri
Levante) in the eastern Ligurian Riviera, Chthamalus
barnacles constitute belts on rocky shores approxi-
mately between sea level and 3 m above (Figure 1
(a-c)), reaching high-density values. No evidences of
strong predation by whelks or blennies or bulldozing
by limpets were observed in the sites considered.
During our study, the density in the upper splash

zone ranged from 2,320 ± 381 individuals m−2 at
Bonassola to 34,670 ± 1,920 individuals m−2 at
Portovenere East. The lowest values were recorded
in the three central-considered localities (Portovenere
West, Vernazza and Bonassola) (Table I).
In the lower splash zone, densities were always

smaller in all localities, excluding Bonassola: the
maximum density (10,295 ± 1,942 individuals
m−2) was observed at Portovenere Byron Cave and

the minimum one at Manara Cape (1,017 ± 293
individuals m−2).
According to ANOVA analysis and pairwise tests,

there were significant differences between localities
and levels of the splash zone for the Chthamalus
densities (Table II).
The interaction between the two factors was also

significant in most cases for the high splash zone
(Table II): three localities (Portovenere West,
Vernazza and Bonassola, characterised by jasper,
quartzite and metagabbros, respectively), showing
the lowest densities, were separated from all others
(limestone and basalt substrates) (Figure 4).
In the upper splash zone, barnacle densities were

significantly higher in relation to the CaO percent
concentration (R2 = 0.87, Figure 3(a)), while they
decreased significantly at high SiO2 concentrations
(R2 = 0.78, Figure 3(b)). No significant relationship
was found for the lower splash zone.
From a lithological point of view (Tables I and

III; Figure 4), the limestones of Portovenere Castle,
Portovenere Byron Cave and Portovenere East
hosted the highest average barnacle densities, ran-
ging from 20,000 to 34,650 individuals m−2. Here,
the mineral phase was totally represented by calcite.
The density values remained high (19,332 ± 3,454
individuals m−2) also on the marl of Manara Cape,
which showed high percent of calcite (80% of rock

Figure 3. Relationships between average barnacle densities and CaO wt% (a) and SiO2 wt% (b) percentage concentrations, in the upper
(solid spots) and in the lower (open circles) splash zones.
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volume). Different results arose when studying the
population densities on substrates particularly rich
in silicates and quartz. The jasper of Portovenere
West and the quartzite of Vernazza, both with
a dominant quartz fraction ((95% and 80% of their
volume, respectively, with negligible presence of cal-
cite (5%)), showed the lowest values of barnacle
density.
Regarding the ophiolitic rocks, on the Bonassola

metagabbro, characterised by plagioclase and clino-
pyroxene (60% and 40% vol, respectively),
Chthamalus density was very low, while on the
Framura basalt, containing a high fraction of amor-
phous altered glass (70%) and plagioclase (25%),

the density was higher, despite the complete lack of
calcite (Table III).
Although the CaO concentration, in particular cal-

cite, appeared as an important driver in determining
the barnacle density (Figures 3 and 4), also the crystal
size of the most abundant mineral phase of the rocks
showed a strong inverse correlation (R2 = 0.9): the
highest density values were found on the Portovenere
limestone, which has the smallest calcite grain size.
This was particularly evident when excluding from
the regression the localities characterised by rocks
with a very high quartz concentration (Portovenere
West and Vernazza), where densities were very low,
despite a very small grain size (Figure 5).

Table II. Two-Way ANOVA analysis and pairwise tests for barnacle density, in upper (H) and lower (L) splash zones. Bold characters
indicate significative values. Only significative values are reported for the LocalityXHeight interaction. Acronomies referred to the
toponomies reported in Table I.

SSS df MS F p (same)

Locality: 1.02E+07 7 1.46E+06 17.71 8.10E-17
Height: 6.47E+06 1 6.47E+06 78.36 2.86E-15
Interaction: 6.20E+06 7 885876 10.74 7.64E-11
Within: 1.19E+07 144 82516.2
Total: 3.48E+07 159
Tukey’s pairwise testFactor: “Locality”

Pbc Pc PW PE Ve Bo Fr Ma

Pbc 0.1707 1 6.98E-10 2.11E-07 2.21E-09 0.06867 0.474
Pc 0.1707 0.133 0.0001926 0.01162 0.000462 0.9999 0.9992
PW 1 0.133 3.83E-10 0.9563 1 0.0008721 1.66E-05
PE 6.98E-10 0.0002 3.83E-10 1.21E-07 1.22E-09 0.05088 0.4022
Ve 2.11E-07 0.0116 1.21E-07 0.9563 0.9871 0.03707 0.001585
Bo 2.21E-09 0.0005 1.22E-09 1 0.9871 0.001971 4.31E-05
Fr 0.06867 0.9999 0.05088 0.0008721 0.03707 0.001971 0.9813
Ma 0.474 0.9992 0.4022 1.66E-05 0.001585 4.31E-05 0.9813

Interaction p

Pbc-H Pbc-L 1.15E-05
Pbc-H PW-H 3.33E-10
Pbc-H Ve-H 1.80E-08
Pbc-H Bo-H 2.63E-11
Pbc-H Fr-H 0.02938
Pc-H Pc-L 0.00371
Pc-H PW-H 0.0001
Pc-H PE-H 0.00156
Pc-H Ve-H 0.00216
Pc-H Bo-H 1.27E-05
PW-H PE-H 4.20E-14
PW-H Fr-H 0.01015
PW-H Ma-H 0.00036
PE-H PE-L 4.96E-14
PE-H Ve-H 3.20E-13
PE-H Bo-H 3.02E-14
PE-H Fr-H 1.01E-05
PE-H Ma-H 0.00047
Ve-H Ma-H 0.0065
Bo-H Fr-H 0.00188
Bo-H Ma-H 4.91E-05

394 M. Canessa et al.



Discussion

Although a plethora of ecological and biological
variables is known to affect barnacle’s settling and
survival and, consequently, their population

structure, our data seem to indicate that the density
of the common Mediterranean barnacles,
Chthamalus spp., in the Eastern Ligurian Sea, is
also driven by lithological and mineralogical

Figure 4. Average density ± SE of the barnacles in the upper (continuous line) and in the lower (dotted line) splash zones. Stacked bars
represent the mineral phase composition of each studied rock. Calcite, yellow bars; quartz, blue bars; silicates, green bars; amorphous
glass, grey bar. Localities are disposed according to a decreasing concentration of calcite in the rocks.

Figure 5. Relationship between barnacle densities in upper (solid spots) and lower (open circles) splash zones and crystal size of the main
mineral occurring in each rock. Please note that in the two rocks with a very high quartz concentration (Portovenere W and Vernazza),
barnacle density is very low (in the graph, these two points are represented by squares). Data from Framura are not considered due to the
high presence of amorphous altered glass, which has no measurable crystal size.
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characteristics of the rocky substrates. These fea-
tures, in fact, explain the quantitative differences
between the investigated localities, characterised by
an average mutual distance not exceeding 5 km,
with similar shore slope and wave exposure.
The density values appeared independent of the

seawater littoral quality: in fact, the ecological index
EQR-CARLIT, based on macrophyte assemblages,
and used to assess the status of coastal waters, evi-
denced a progressive increase in the ES (Ecological
Status), moving away from the Gulf of La Spezia
(the largest urbanised zone of the area) towards
Sestri Levante (Asnaghi et al. 2009) (Figure 2).
Previous studies had already evidenced the role of

rock features in determining the Chthamalus belt
density and distribution. Some friable rocks, such
as chalk and sandstones, may be more unsuitable
compared to harder granites. In fact, in the English
Channel, the geographical distribution of
C. montagui appears to be driven by the presence
of chalk along the coastline; on this substratum,
although the recruitment is high, the barnacle survi-
val rate is relatively low. In this way, chalks represent
a potential barrier to the eastward range extension of
this barnacle (Herbert & Hawkins 2006). Also, the
pattern of distribution of C. anisopoma in California
is related to a greater post-settlement mortality on

basalts than on granites, probably due to different
thermal capacities of each rock (Raimondi 1988a).
In investigated localities of the Ligurian coast,

barnacle densities were maximal in the upper splash
zones characterised by substrates particularly rich in
calcite, with poor levels of silicates and the absence
of quartz. This mineral seemed to inhibit the devel-
opment of the populations, as already documented
for other species and habitats in the Mediterranean
Sea (Bavestrello et al. 2000, 2003, 2018; Guidetti
et al. 2004; Cattaneo-Vietti et al. 2004). The pre-
sence of quartz has been considered one of the most
important factors in driving larval settling and ulti-
mate species composition on hard substrata. Benthic
assemblages set on quartz-rich rocks, in fact, were
less diverse and showed a simpler physiognomy,
indicating the difficulty of reaching a “mature” con-
dition in presence of quartz, which acts as an inhi-
biting factor (Bavestrello et al. 2000). Cerrano et al.
(1999) suggested that crystalline quartz has an evi-
dent negative effect on animals that colonise sands,
probably due both to the oxidant properties of the
crystal surface, generating silicon-based radicals,
and to the formation of .OH radicals in the sur-
rounding aqueous environment (Marasas &
Harington 1960; Langer & Nolan 1986; Shi et al.
1988; Vallyathan et al. 1988).

Table III. Mineralogical description of the sampled lithotypes, with weight percentages of SiO2 and CaO content, their percentage content
in volume and dimensions of crystals.

Locality (Lithotype)
SiO2 CaO
[wt%]

Phase
composition
[volume%]

Crystal size (mm)

Calcite
(Cc)

Quartz
(Qtz)

Silicates

Muscovite
(Ms)

Plagioclase
(Plg)

Pyroxene
(Cpx)

Olivine
(Ol)

Portovenere Castle
(Limestone)

0.01 SiO2

37.04 CaO
99 Cc 0.04–0.08

Portovenere Byron
Cave (Limestone)

15.08 SiO2

36.45 CaO
70 Cf 0.01
30 Cc 0.5

Portovenere East
(Limestone)

6.41 SiO2

48.93 CaO
100 Cc 0.01–0.03

Portovenere West
(Jasper)

78.26 SiO2

10.82 CaO
95 Qtz 0.001
5 Cc 0.6

Vernazza (Quartzite) 59.57 SiO2

7.68 CaO
80 Qtz 0.02–0.06
15 Ms 0.1
5 Cc 0.2

Bonassola
(Metagabbro)

51.26 SiO2

7.48 CaO
60 Plg 0.04–0.5
40 Cpx 3

Framura (Basalt) 57.15 SiO2

3.45 CaO
70 Altered glass
25 Plg 0.2–0.5
5 Ol 0.3

Manara Cape (Marl) 55.59 SiO2

22.66 CaO
80 Cc 0.01–0.3
13 Qtz 0.01–0.25
5 Plg 0.3
2 Ms 0.1–0.2
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A positive role of calcite, favouring greater
Chthamalus settling, is evident. It was demonstrated
that the calcium required for the shell growth in
Semibalanus balanoides (L. 1767) is supplied by sea-
water. In fact, during the emersion time, the shell
calcification process soon stops (Crisp & Bourget
1985). The Ligurian Sea has a very low tidal ampli-
tude (20–30 cm) and, in this condition, the
Chthamalus populations living in the upper splash
zone, at least in summertime, are seldom moistened.
Consequently, it can be hypothesised that, in these
conditions, the calcium supply derives from alterna-
tive sources such as the underlying rock. In these
barnacles, in fact, the continuous process of shell
formation (Bourget 1987) (Figure 1(d)) may be sup-
ported through the substrate solubilisation favoured
by the lack of a basal carbonatic plate. Also, the
limpets ingest large amounts of calcium carbonate
that seemingly derive directly from the rock to sup-
port the shell growth (Andrews & Williams 2000).
Moreover, the crystal size, in turn determining the

surface roughness of the rocks, also provides a good
key of interpretation: rocks with small crystal dia-
meter seem to be more suitable for settling. The very
low densities recorded on the metagabbro of
Bonassola, which shows coarse silicate (clinopyrox-
ene) crystals, support this hypothesis (Table III).
The rock roughness has already been considered

as a relevant factor involved in barnacle settling.
Amphibalanus improvisus (Darwin, 1854), for
example, prefers relatively smooth surfaces
(Berntsson et al. 2000, 2004) and this could be
due to the antennular adhesive disc, which needs
a specific level of roughness to attach firmly (Nott
& Foster 1969; Yule & Walker 1984; Berntsson
et al. 2000). On the other hand, other species are
completely unaffected by roughness: the settle-
ment of cyprids of S. balanoides was tested for 15
different rock types, resulting to be independent of
any potential effect of surface roughness or colour
cues (Holmes et al. 1997), while for A. amphitrite
(= Balanus amphitrite) a preference for red and
blue acrylic sheets was demonstrated (Satheesh &
Wesley 2010).
Similar results were obtained for the Australian

species Tesseropora rosea (Krauss, 1848), whose set-
tlement was found to be largely independent of dif-
ferences in the rocky substrate (Caffey 1982). In
these cases, however, the ability to settle on unsui-
table substrates could be related to the capacity of
the barnacles to quickly produce a calcareous base
to isolate themselves from the substrate (Okano
et al. 1996; Burden et al. 2012), which is lacking
in the studied Chthamalus.

Along the Ligurian coast, the barnacle densities in
the lower splash zones appeared generally less
crowded although the frequent wave washout can
lead to a major calcium supply from seawater and
minimise the quartz effect. This condition could be
related with a major competition for substrate, con-
sidering also the presence of a structured biofilm,
which could mediate the interaction between barna-
cle cyprids and rock surface.
In conclusion, our results suggest that the miner-

alogical features of the substrate may play an impor-
tant role in structuring supralittoral benthic
communities. Calcite-rich rocks emerge as more
suitable substrates for Chthamalus settlement than
compounds rich in silica and quartz. Moreover, the
lack of a carbonatic basal plate in this genus could
allow a calcium uptake even in a habitat rarely
affected by waves, such as the upper splash zone.
Therefore, our results suggest a crucial role of the
coastal mineralogy in influencing the density of
Chthamalus in Mediterranean rocky habitats when
the biofilm coverage is lacking.
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