61 research outputs found

    Network analysis and calibration of the "leveraged network-based financial accelerator"

    Get PDF
    In this paper we analyze the network structure that endogenously emerges in the credit market of the agent-based model of Riccetti et al. (2011), where two kinds of financial accelerators are at work: the "leverage accelerator" and the "network-based accelerator". We focus on the properties of network topology and its interplay with the overall economic performance. Moreover, we empirically calibrate the banking network in the model by using Japanese real data

    Null Models of Economic Networks: The Case of the World Trade Web

    Get PDF
    In all empirical-network studies, the observed properties of economic networks are informative only if compared with a well-defined null model that can quantitatively predict the behavior of such properties in constrained graphs. However, predictions of the available null-model methods can be derived analytically only under assumptions (e.g., sparseness of the network) that are unrealistic for most economic networks like the World Trade Web (WTW). In this paper we study the evolution of the WTW using a recently-proposed family of null network models. The method allows to analytically obtain the expected value of any network statistic across the ensemble of networks that preserve on average some local properties, and are otherwise fully random. We compare expected and observed properties of the WTW in the period 1950-2000, when either the expected number of trade partners or total country trade is kept fixed and equal to observed quantities. We show that, in the binary WTW, node-degree sequences are sufficient to explain higher-order network properties such as disassortativity and clustering-degree correlation, especially in the last part of the sample. Conversely, in the weighted WTW, the observed sequence of total country imports and exports are not sufficient to predict higher-order patterns of the WTW. We discuss some important implications of these findings for international-trade models.Comment: 39 pages, 46 figures, 2 table

    The physics of spreading processes in multilayer networks

    Get PDF
    The study of networks plays a crucial role in investigating the structure, dynamics, and function of a wide variety of complex systems in myriad disciplines. Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (i.e., "multiplexity") among their constituent components and/or multiple interacting subsystems. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent "multilayer" approach for modeling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. On one hand, it allows one to couple different structural relationships by encoding them in a convenient mathematical object. On the other hand, it also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.Comment: 25 pages, 4 figure

    Interbank borrowing and lending between financially constrained banks

    Get PDF
    Some stylized facts about transactions among banks are not easily reconciled with coinsurance of short-term liquidity risks. In our model, interbank markets play a different role. We argue that lending to another bank can reduce a bank’s overall portfolio risk through diversification. If insolvency is costly, this diversification improves the interbank lender's funding liquidity, boosting credit supply to nonbanks. However, diversification comes at an endogenous cost that depends on bank-specific factors of interbank borrower and lender. The model provides a framework for understanding the importance of interbank lending for aggregate credit supply and the stability of banking systems. The model’s predictions are consistent with evidence documented in the literature that other theories cannot consistently explain

    Interaction in agent-based economics: A survey on the network approach

    No full text
    In this paper we aim to introduce the reader to some basic concepts and instruments used in a wide range of economic networks models. In particular, we adopt the theory of random networks as the main tool to describe the relationship between the organization of interaction among individuals within different components of the economy and overall aggregate behavior. The focus is on the ways in which economic agents interact and the possible consequences of their interaction on the system. We show that network models are able to introduce complex phenomena in economic systems by allowing for the endogenous evolution of networks

    Major trends in agent-based economics

    No full text
    The study of the economy by means of Agent-Based (AB) models is a relatively new field. It dates back to the early 90’s, when the increasing availability of cheap computing power has made possible to undertake the first computationally demanding experiments required tomodel the interactions of a large number of boundedly rational and heterogeneous agents (for a review, see Tesfatsion and Judd 2006), in an economy characterized by non-equilibrium dynamics and information asymmetries
    • …
    corecore