75 research outputs found

    Hemostasis and ageing

    Get PDF
    On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related Diseases was held in Palermo, Italy. The lecture of D. Mari on Hemostasis and ageing is summarized herein. Physiological ageing is associated with increased plasma levels of many proteins of blood coagulation together with fibrinolysis impairment. This may be of great concern in view of the known association between vascular and thromboembolic diseases and ageing. On the other hand, centenarians are characterized by a state of hypercoagulability and possession of several high-risk alleles and well-known atherothrombotic risk markers but this appears to be compatible with longevity and/or health. Parameters considered risk factors for atherosclerotic vascular diseases in young people may lose their biological significance in advanced age and assume a different role

    Simultaneous Activation of Complement and Coagulation by MBL-Associated Serine Protease 2

    Get PDF
    The complement system is an important immune mechanism mediating both recognition and elimination of foreign bodies. The lectin pathway is one pathway of three by which the complement system is activated. The characteristic protease of this pathway is Mannan-binding lectin (MBL)-associated serine protease 2 (MASP2), which cleaves complement proteins C2 and C4. We present a novel and alternative role of MASP2 in the innate immune system. We have shown that MASP2 is capable of promoting fibrinogen turnover by cleavage of prothrombin, generating thrombin. By using a truncated active form of MASP2 as well as full-length MASP2 in complex with MBL, we have shown that the thrombin generated is active and can cleave both factor XIII and fibrinogen, forming cross-linked fibrin. To explore the biological significance of these findings we showed that fibrin was covalently bound on a bacterial surface to which MBL/MASP2 complexes were bound. These findings suggest that, as has been proposed for invertebrates, limited clotting may contribute to the innate immune response

    Effects of MASP-1 of the Complement System on Activation of Coagulation Factors and Plasma Clot Formation

    Get PDF
    BACKGROUND: Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. METHODOLOGY/PRINCIPAL FINDINGS: We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. CONCLUSIONS/SIGNIFICANCE: We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation

    Structure-Based Predictive Models for Allosteric Hot Spots

    Get PDF
    In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a widely used machine-learning method. The training data set consisted of residues classified as either hotspots or non-hotspots based on experimental characterization of point mutations from a diverse set of allosteric proteins. Each residue had an associated set of calculated features. Two sets of features were used, one consisting of dynamical, structural, network, and informatic measures, and another of structural measures defined by Daily and Gray [1]. The resulting models performed well on an independent data set consisting of hotspots and non-hotspots from five allosteric proteins. For the independent data set, our top 10 models using Feature Set 1 recalled 68–81% of known hotspots, and among total hotspot predictions, 58–67% were actual hotspots. Hence, these models have precision P = 58–67% and recall R = 68–81%. The corresponding models for Feature Set 2 had P = 55–59% and R = 81–92%. We combined the features from each set that produced models with optimal predictive performance. The top 10 models using this hybrid feature set had R = 73–81% and P = 64–71%, the best overall performance of any of the sets of models. Our methods identified hotspots in structural regions of known allosteric significance. Moreover, our predicted hotspots form a network of contiguous residues in the interior of the structures, in agreement with previous work. In conclusion, we have developed models that discriminate between known allosteric hotspots and non-hotspots with high accuracy and sensitivity. Moreover, the pattern of predicted hotspots corresponds to known functional motifs implicated in allostery, and is consistent with previous work describing sparse networks of allosterically important residues

    Thrombin inhibitory activity of some polyphenolic compounds

    Get PDF
    Thrombin, also known as an active plasma coagulation factor II, belongs to the family of serine proteases and plays a crucial role in blood coagulation process. The process of thrombin generation is the central event of the hemostatic process and regulates blood coagulant activity. For this reason, thrombin inhibition is key to successful novel antithrombotic pharmacotherapy. The aim of our present study was to examine the effects of the well-known polyphenolic compounds on the activity of thrombin, by characterization of its interaction with selected polyphenols using different biochemical methods and biosensor BIAcore analyses. Only six compounds, cyanidin, quercetin, silybin, cyanin, (+)-catechin and (−)-epicatechin, of all examined in this study polyphenols caused the inhibition of thrombin amidolytic activity. But only three of the six compounds (cyanidin, quercetin and silybin) changed thrombin proteolytic activity. BIAcore analyses demonstrated that cyanidin and quercetin caused a strong response in the interaction with immobilized thrombin, while cyanin and (−)-epicatechin induced a low response. Lineweaver–Burk curves show that used polyphenol aglycones act as competitive thrombin inhibitors. Our results suggest that polyphenolic compounds might be potential structural bases and source to find and project nature-based, safe, orally bioavailable direct thrombin inhibitors.This work was supported by Grant 545/485 and Grant 506/810 from the University of Lodz

    An antifibrinolytic mechanism describing the prothrombotic effect associated with factor VLeiden.

    Get PDF
    Factor Va is the essential cofactor in prothrombinase-dependent activation of prothrombin. Resistance of Factor VaLeiden to inactivation by activated protein C (APC) contributes to thrombotic tendencies in subjects with the variant due, in part, to the inability to terminate thrombin production which increases both fibrin accretion and the frequency of thrombus formation. A reduced ability to inhibit thrombin generation, however, may lead to the stabilization of a clot through the activation of thrombin activatable fibrinolysis inhibitor (TAFI). This hypothesis was tested by determining the profibrinolytic effect of APC on lysis time using clots formed with plasma from either homozygous normal (n = 4) or homozygous factor VLeiden (n = 4) subjects. Clots were formed in the presence of tissue-type plasminogen activator, thrombin, phosphatidylcholine/phosphatidylserine vesicles, Ca2+, and various concentrations of APC. Approximately 10-fold more APC was required to reduce lysis time from 140 to 50 min in clots containing factor VLeiden compared to normal factor V. This effect was specific to the form of factor V present in plasma since identical results were obtained in an appropriately reconstituted purified system, which included both TAFI and either form of factor V purified from pooled plasma. In the absence of TAFI, APC did not affect clot lysis in experiments with either normal factor V or factor VLeiden. During the various lysis assays performed with purified components, clots were solubilized and the proteolytic alterations in factor V/Va were assessed by Western blotting using a specific factor Va heavy chain monoclonal antibody. The heavy chain of factor VaLeiden persisted for as long as 60 min, in the presence of 6.3 n APC indicating sustained activity of factor VaLeiden during the lysis assay. In contrast, no factor Va heavy chain was present after the first 5.0 min in clots formed in the presence of normal factor V and 6.3 n APC. These combined data indicate that factor VaLeiden specifically attenuates the profibrinolytic effect of APC. Thus, an impaired TAFI-dependent profibrinolytic response to APC in APC-resistant individuals appears to be an additional factor contributing to the prothrombotic tendencies in subjects with factor VLeiden
    corecore