7,818 research outputs found
Reconstruction and Particle Identification for a DIRC System
We study the reconstruction and particle identification (PID) problem for
Ring Imaging devices providing a good knowledge of the direction of the
Cerenkov photons, as the DIRC system, on which we specialize. We advocate first
the use of the stereographic projection as a tool allowing a suitable
representation of the photon data, as it allows to represent the Cerenkov cone
always as a circle. We set up an algorithm able to perform reliably a fit of
circle arcs of small angular opening, by minimising a true Chi2 expression. The
system we develop for PID relies on this algorithm and on a procedure able to
remove background photons with a high efficiency. We thus show that, even when
the background is large, it is possible to perform an efficient PID by means of
a fit algorithm which finally provides all the circle parameters; these are
connected with the charged track direction and its Cerenkov angle. It is shown
that background effects can be dealt without spoiling significantly the
reconstruction probability distributions.Comment: 67 pages, 23 figure
Light Hadron Spectroscopy and Decay at BESIII
Light hadron spectroscopy plays an important role in understanding the decay
dynamics of unconventional hadronic states, such as strangeonium and glueballs.
BESIII provides an ideal avenue to search for these exotic states thanks to a
huge amount of data recorded at various energy points in the tau-charm mass
region including J/psi resonance. This report summarizes recent results of the
BESIII experiment related to the glueballs and strangeonium-like states.Comment: 6 pages, 5 figures, Conference proceeding of FPCP-201
Optimal Microlensing Observations
One of the major limitations of microlensing observations toward the Large
Magellanic Cloud (LMC) is the low rate of event detection. What can be done to
improve this rate? Is it better to invest telescope time in more frequent
observations of the inner high surface-brightness fields, or in covering new,
less populated outer fields? How would a factor 2 improvement in CCD
sensitivity affect the detection efficiency? Would a series of major (factor
2--4) upgrades in telescope aperture, seeing, sky brightness, camera size, and
detector efficiency increase the event rate by a huge factor, or only
marginally? I develop a simplified framework to address these questions. With
observational resources fixed at the level of the MACHO and EROS experiments,
the biggest improvement (factor ~2) would come by reducing the time spent on
the inner ~25 deg^2 and applying it to the outer ~100 deg^2. By combining this
change with the characteristics of a good medium-size telescope (2.5 m mirror,
1" point spread function, thinned CCD chips, 1 deg^2 camera, and dark sky), it
should be possible to increase the detection of LMC events to more than 100 per
year (assuming current estimates of the optical depth apply to the entire LMC).Comment: Submitted to ApJ, 13 pages plus 3 figure
Web-Appendix of: The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation.
ABSTRACT. In economic decisions we often have to deal with uncertain events for which no probabilities are known. Several normative models have been proposed for such decisions. Empirical studies have usually been qualitative, or they estimated ambiguity aversion through one single number. This paper introduces the source method, a tractable method for quantitatively analyzing uncertainty empirically that can capture the richness of ambiguity attitudes. The theoretical key in our method is the distinction between different sources of uncertainty, within which subjective (choice-based) probabilities can still be defined. Source functions convert those subjective probabilities into willingness to bet. We apply our method in an experiment, where we do not commit to particular ambiguity attitudes but let the data speak
AgapeZ1: a Large Amplification Microlensing Event or an Odd Variable Star Towards the Inner Bulge of M31
AgapeZ1 is the brightest and the shortest duration microlensing candidate
event found in the Agape data. It occured only 42" from the center of M31. Our
photometry shows that the half intensity duration of the event6 is 4.8 days and
at maximum brightness we measure a stellar magnitude of R=18.0 with B-R=0.80
mag color. A search on HST archives produced a single resolved star within the
projected event position error box. Its magnitude is R=22.Comment: 4 pages with 5 figure
AGAPE, an experiment to detect MACHO's in the direction of the Andromeda galaxy
The status of the Agape experiment to detect Machos in the direction of the
andromeda galaxy is presented.Comment: 4 pages, 1 figure in a separate compressed, tarred, uuencoded uufile.
In case ofproblem contact [email protected]
Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite
Physically-based droughts can be defined as a water deficit in at least one component of the land surface hydrological cycle. The reliance of different activity domains (water supply, irrigation, hydropower, etc.) on specific components of this cycle requires drought monitoring to be based on indices related to meteorological, agricultural, and hydrological droughts. This paper describes a high-resolution retrospective analysis of such droughts in France over the last fifty years, based on the Safran-Isba-Modcou (SIM) hydrometeorological suite. The high-resolution 1958–2008 Safran atmospheric reanalysis was used to force the Isba land surface scheme and the hydrogeological model Modcou. Meteorological droughts are characterized with the Standardized Precipitation Index (SPI) at time scales varying from 1 to 24 months. Similar standardizing methods were applied to soil moisture and streamflow for identifying multiscale agricultural droughts – through the Standardized Soil Wetness Index (SSWI) – and multiscale hydrological droughts, through the Standardized Flow Index (SFI). Based on a common threshold level for all indices, drought event statistics over the 50-yr period – number of events, duration, severity and magnitude – have been derived locally in order to highlight regional differences at multiple time scales and at multiple levels of the hydrological cycle (precipitation, soil moisture, streamflow). Results show a substantial variety of temporal drought patterns over the country that are highly dependent on both the variable and time scale considered. Independent spatio-temporal drought events have then been identified and described by combining local characteristics with the evolution of area under drought. Summary statistics have finally been used to compare past severe drought events, from multi-year precipitation deficits (1989–1990) to short hot and dry periods (2003). Results show that the ranking of drought events depends highly on both the time scale and the variable considered. This multilevel and multiscale drought climatology will serve as a basis for assessing the impacts of climate change on droughts in France
The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy
The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a
very-high-definition camera (546 fast phototubes with 0.12 degrees spacing
surrounded by 54 larger tubes in two guard rings) started operation in Autumn
1996 on the site of the former solar plant Themis (France). Using the
atmospheric Cherenkov technique, it detects and identifies very high energy
gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has
detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in
detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin
Congested traffic equilibria and degenerate anisotropic PDEs
Congested traffic problems on very dense networks lead, at the limit, to minimization problems posed on measures on curves as shown in Baillon and Carlier (Netw. Heterogenous Media 7: 219--241, 2012). Here, we go one step further by showing that these problems can be reformulated in terms of the minimization of an integral functional over a set of vector fields with prescribed divergence. We prove a Sobolev regularity result for their minimizers despite the fact that the Euler-Lagrange equation of the dual is highly degenerate and anisotropic. This somehow extends the analysis of Brasco et al. (J. Math. Pures Appl. 93: 652--671, 2010) to the anisotropic case
- …
