50 research outputs found

    Measuring Directed Functional Connectivity Using Non-Parametric Directionality Analysis : Validation and Comparison with Non-Parametric Granger Causality

    Get PDF
    BACKGROUND: 'Non-parametric directionality' (NPD) is a novel method for estimation of directed functional connectivity (dFC) in neural data. The method has previously been verified in its ability to recover causal interactions in simulated spiking networks in Halliday et al. (2015). METHODS: This work presents a validation of NPD in continuous neural recordings (e.g. local field potentials). Specifically, we use autoregressive models to simulate time delayed correlations between neural signals. We then test for the accurate recovery of networks in the face of several confounds typically encountered in empirical data. We examine the effects of NPD under varying: a) signal-to-noise ratios, b) asymmetries in signal strength, c) instantaneous mixing, d) common drive, e) data length, and f) parallel/convergent signal routing. We also apply NPD to data from a patient who underwent simultaneous magnetoencephalography and deep brain recording. RESULTS: We demonstrate that NPD can accurately recover directed functional connectivity from simulations with known patterns of connectivity. The performance of the NPD measure is compared with non-parametric estimators of Granger causality (NPG), a well-established methodology for model-free estimation of dFC. A series of simulations investigating synthetically imposed confounds demonstrate that NPD provides estimates of connectivity that are equivalent to NPG, albeit with an increased sensitivity to data length. However, we provide evidence that: i) NPD is less sensitive than NPG to degradation by noise; ii) NPD is more robust to the generation of false positive identification of connectivity resulting from SNR asymmetries; iii) NPD is more robust to corruption via moderate amounts of instantaneous signal mixing. CONCLUSIONS: The results in this paper highlight that to be practically applied to neural data, connectivity metrics should not only be accurate in their recovery of causal networks but also resistant to the confounding effects often encountered in experimental recordings of multimodal data. Taken together, these findings position NPD at the state-of-the-art with respect to the estimation of directed functional connectivity in neuroimaging

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Antibody dynamics and spontaneous viral clearance in patients with acute hepatitis C infection in Rio de Janeiro, Brazil

    Get PDF
    Submitted by Sandra Infurna ([email protected]) on 2017-01-18T10:31:05Z No. of bitstreams: 1 clara_yoshida_etal_IOC_2011.pdf: 146042 bytes, checksum: 8ec889224534b76d755828a99d0660c2 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2017-01-18T10:59:52Z (GMT) No. of bitstreams: 1 clara_yoshida_etal_IOC_2011.pdf: 146042 bytes, checksum: 8ec889224534b76d755828a99d0660c2 (MD5)Made available in DSpace on 2017-01-18T10:59:52Z (GMT). No. of bitstreams: 1 clara_yoshida_etal_IOC_2011.pdf: 146042 bytes, checksum: 8ec889224534b76d755828a99d0660c2 (MD5) Previous issue date: 2011Innsbruck Medical University. Department of Medical Statistics, Informatics and Health Economics. Innsbruck, Austria.Harvard Medical School. Boston, MA, USA / Massachussets General Hospital. Division of Infectious Diseases. Boston, MA, USA.Harvard Medical School. Boston, MA, USA / Massachussets General Hospital. Gastrointestinal Unit. Boston, MA, USA.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ. Brasil.Laboratório Central de Saúde Pública Noel Nutels. Divisão de Hepatites. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ. Brasil / Universidade Federal do Estado do Rio de Janeiro. Hospital Universitário Gaffrée Guinle. Unidade de Hepatologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Desenvolvimento Tecnológico em Virologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ. Brasil.Universitätsklinikum Eppendorf. Medizinische Klinik I. Hamburg, Germany.Fondation Merieux. Emerging Pathogens Laboratory. Lyon, France.University of Innsbruck. Institute of Statistics. Innsbruck, Austria.National Institute on Aging. Gerontology Research Center. Baltimore, USA.Innsbruck Medical University. Department of Medical Statistics, Informatics and Health Economics. Innsbruck, Austria.Innsbruck Medical University. Department of Medical Statistics, Informatics and Health Economics. Innsbruck, Austria.Innsbruck Medical University. Department of Medical Statistics, Informatics and Health Economics. Innsbruck, Austria.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ. Brasil.Background: The anti-HCV antibody response has not been well characterized during the early phase of HCV infection and little is known about its relationship to the clinical course during this period. Methods: We analyzed serial anti-HCV antibodies longitudinally obtained from a prospective cohort of 65 patients with acute HCV infection by using a microparticle enzyme immunoassay AxSYM HCV 3.0 (Abbott Diagnostics) during the first 12 months from HCV acquisition in Rio de Janeiro, Brazil. Spontaneous viral clearance (SVC) was defined as undetectable HCV RNA in serum, in the absence of treatment, for three consecutive HCV PCR tests within 12-months of follow-up. Results: Baseline antibody values were similar among patient groups with self-limiting HCV evolution (n = 34) and persistent viremia (n = 31) [median (interquartile range) signal/cut-off ratio (s/co) 78.7 (60.7-93.8) vs. 93.9 (67.8- 111.9), p = 0.26]. During 12-months follow-up, patients with acute spontaneous resolving HCV infection showed significantly lower serial antibody response in comparison to individuals progressing to chronic infection [median (interquartile range) s/co 62.7 (35.2-85.0) vs. 98.4 (70.4-127.4), p < 0.0001]. In addition, patients with self-limiting HCV evolution exhibited an expeditious, sharp decline of serial antibody values after SVC in comparison to those measured before SVC [median (interquartile range) s/co 56.0 (25.4-79.3) vs. 79.4 (66.3-103.0), p < 0.0001]. Conclusion: Our findings indicate a rapid short-term decline of antibody values in patients with acute spontaneous resolving HCV infection

    Age-related changes in neural functional connectivity and its behavioral relevance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resting-state recordings are characterized by widely distributed networks of coherent brain activations. Disturbances of the default network - a set of regions that are deactivated by cognitive tasks and activated during passive states - have been detected in age-related disorders such as Alzheimer's or Parkinson's disease but alterations in the course of healthy aging still need to be explored.</p> <p>Results</p> <p>Using magnetoencephalography (MEG), the present study investigated how age-related functional resting-state brain connectivity links to cognitive performance in healthy aging in fifty-three participants ranging in age from 18 to 89 years. A beamforming technique was used to reconstruct the brain activity in source space and the interregional coupling was investigated using partial directed coherence (PDC). We found significant age-related alterations of functional resting-state connectivity. These are mainly characterized by reduced information input into the posterior cingulum/precuneus region together with an enhanced information flow to the medial temporal lobe. Furthermore, higher inflow in the medial temporal lobe subsystem was associated with weaker cognitive performance whereas stronger inflow in the posterior cluster was related to better cognitive performance.</p> <p>Conclusion</p> <p>This is the first study to show age-related alterations in subsystems of the resting state network that are furthermore associated with cognitive performance.</p
    corecore