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Abstract

Background: The anatomical rationale and efficacy of the chin tuck in improving airway protection for some people
with swallowing disorders have been well researched and established. However, there are still open questions
regarding whether brain activity for swallowing control is altered while performing this chin-tuck maneuver.

Methods: In this study, we collected EEG signals from 55 healthy adults while swallowing in the neutral and
chin-tuck head positions. The time-frequency based synchrony measure was used to form brain networks. We
investigated both the small-world properties of these brain networks and differences among the constructed brain
networks for the two head positions during swallowing tasks.

Results: We showed that brain networks for swallowing in both head positions exhibit small-world properties.
Furthermore, we showed that swallowing in the chin-tuck head position affects brain networks in the Alpha and
Gamma frequency bands.

Conclusions: According to these results, we can tell that the parameter of head position should be considered in
future investigations which utilize EEG signals during swallowing activity.
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Introduction
Dysphagia refers to any kind of swallowing disorder, and it
may occur for many different reasons. In the case of neu-
rogenic dysphagia, swallowing difficulties occur due to
lesions in disparate cortical and subcortical brain regions,
or other structures of the central and peripheral ner-
vous systems [1]. Some of the most common causes of
oropharyngeal dysphagia are stroke [2], Parkinson’s dis-
eases [3], cerebral palsy [4], and physical traumatic brain
injuries [5]. Compromised airway protection and aspira-
tion of food and liquids are themost significant immediate
clinical result of dysphagia [6, 7]. Aspiration can lead to
lethal outcomes such as airway obstruction, or develop
into pneumonia which, according to previous studies, car-
ries a mortality rate of 20% to 50% for dysphagia sufferers
[8–10].
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Swallowing in the chin-tuck position (head and neck
flexion) is one of several postural techniques that allows
some patients with specific swallowing abnormalities to
swallow more safely [11, 12]. The chin-tuck maneuver
involves flexing the head and neck approximately forty-
five to sixty degrees, approximating the chin to the ante-
rior upper chest while swallowing. This posture has been
shown to produce several biomechanical advantages dur-
ing swallowing for patients who have impaired ability to
maintain posterior containment of food and liquids in
the oral cavity until they are ready to swallow, or who
have delayed onset of the pharyngeal stage of the swal-
low; both of which expose the unprotected airway to
aspiration. When the head is in chin-tuck position, the
vallecular cavities between the tongue base and epiglottis
widen, which enables them to sequester material exit-
ing the oral cavity before pharyngeal swallowing begins.
This posture also repositions the posterior wall of the
pharynx in closer proximity to the tongue base which
narrows the pharynx, and subsequently, the inlet to the

© 2015 Jestrović et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192545273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-015-0049-x-x&domain=pdf
mailto: esejdic@ieee.org
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
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laryngeal vestibule, thereby reducing aspiration risk and
increasing airway protection [12–15]. In the first study
of its efficacy, swallowing in the chin-tuck head posi-
tion eliminated aspiration in 50% of patients who were
aspirating liquids due to a delayed onset of the pharyn-
geal stage of swallowing [16], while the remaining 50%
of patients in this study did not benefit from the maneu-
ver due to impairments for which the chin-tuck maneuver
was disadvantageous. However, some studies indicate that
swallowing in the chin-tuck head position is principally
a compensatory maneuver that is effective in prolong-
ing airway closure duration while volitionally deployed
by the person swallowing, and that it did not only pro-
duced an effect that failed to persist after the posture
was withdrawn [17]. On the other hand, studies showed
that therapy and rehabilitation of patients with neurogenic
dysphagia are highly correlated with the brain’s plasticity
and ability to reorganize sensory and motor cortex after
events such as stroke [18]. This neural reorganization pro-
duces compensatory changes in the swallowing sensory
andmotor subsystems [19, 20]. Therefore, efforts to better
understand the potential central nervous system effects
of therapeutic interventions used to restore swallow func-
tion might elucidate how maneuvers like the chin-down
posture influence cerebral plasticity for swallowing after
stroke and other neurological diseases.
Advanced techniques, such as functional magnetic res-

onance imaging (fMRI), positron emission tomography
(PET), magnetoencephalography (MEG), and electroen-
cephalography (EEG) provide significant insight into brain
activity during swallowing. While fMRI and PET are char-
acterized by very good spatial resolution, their shortcom-
ing is that they fail to capture precise temporal informa-
tion. MEG and EEG have better temporal performance;
however, the limitation of MEG is that it cannot propa-
gate a magnetic field into the areas that generate neural
impulses in deeper layers of brain tissue. EEG demon-
strates a degree of superiority when compared with other
techniques. Besides having good temporal resolution,
EEG records neural brain activation, which is considered
a direct link to brain activity. Another advantage of EEG is
that it is not sensitive to interactions or proximity to any
material, and it also enables patients to remain in a natu-
ral body position during testing while fMRI requires the
supine position which is a dangerous and unnatural posi-
tion for dysphagic patients to assume while swallowing.
EEG also lends itself to analysis techniques which pro-

vide insight into the interactions between brain regions.
It enables the measure and analysis of functional inter-
actions between different brain regions by way of the
graph theoretical approach. Graph theory mathemati-
cally describes the relationships between and among ver-
tices (e.g., nodes). Interconnections between vertices are
accomplished by edge connections. Most importantly, for

functional interactions between different brain regions,
graph theory provides an opportunity to determine the
connective relationships between and among neighbor-
hoods of vertices. Studies have shown that graph theory
is suitable for analyzing functional connectivity in the
human brain network and it has been widely used in dif-
ferent human and animal neuroscience studies because
it facilitates easier analysis of the differences and simi-
larities of brain networks [21–24]. Connections between
various cerebral centers enable two-way communication
between those centers and are important in the function
of the brain as well as in its organizational development.
Investigation of these communication networks in the
brain could provide important insights into the core of
human brain function. Network analysis has been pre-
viously used for interpreting other physiological signals
[25]. These previous contributions lead us to the conclu-
sion that it would be informative to apply the network
analysis approach for the investigation of swallowing brain
activities.
In a brain network, vertices refer to brain regions of

interest, while edges are solely the functional connections
between two brain regions. The position of the vertices
and edges in a networks will define the topological struc-
ture of the brain network. Topological structure will deter-
mine if synchronization of neural activity between brain
regions is organized more regularly or more randomly.
Regular and random networks have different local cluster-
ing and interconnection path length characteristics. Reg-
ular networks are characterized by higher local clustering
and longer path length between brain regions. This orga-
nization provides greater functional connectivity among
the brain regions; however, communication efficiency is
reduced between brain regions. Random networks have
a lower local clustering and shorter path length between
any two connected brain regions, which provides effi-
cient communication between brain regions but poorer
overall functional connectivity in the brain. Brain regions
whose synchronization with one another is optimally
organized have so-called “small-world” architecture topo-
logical properties. Small-world architecture topology of
the networks share some characteristics with regular net-
works as well as some characteristics with random net-
works. Networks characterized by small-worldness have
strong local clustering (i.e., a characteristic of regular net-
works) and a short path length connecting any two brain
regions (i.e., a characteristic of random networks). Mod-
eling studies have shown that neural networks with small-
world properties are characterized by easier and more
efficient communication between farther-apart neurons
[26, 27], which correlates to optimally synchronized neu-
ral activity between different brain regions within a brain
network. Investigation of small-worldness is of particu-
lar interest for analysis in dysphagia research because it
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could explain how neural reorganization occurs after cere-
bral injury, and lead researchers to interventions which
would speed and optimize recovery from stroke and other
neurological diseases. The small-word properties of con-
structed brain networks and the differences between these
brain networks for two types of head positions will form
the basis of our research.
Analysis of the brain functional connectivity during

swallowing has been previously examined using fMRI
time series. Luan et al. [28] showed that functional con-
nectivity of the network obtained with fMRI during swal-
lowing has small-world properties. Babaei et al. [29]
showed greater functional connectivity in the area of the
anterior and posterior insula. Humbert et al. [30] used
several stimuli to investigate functional connectivity of the
insular region. They showed greater clustering within pos-
terior insula, and greater diversity of connections within
the anterior insula. Even though fMRI provided signifi-
cant insight into the brain functional connectivity during
swallowing, to our knowledge, analysis of the functional
connectivity of swallowing brain network have not been
done using the data obtained with the EEG signals.
In this study, we investigated the small-world properties

of brain networks for swallowing in two head positions:
the neutral or natural position, and the chin-tuck head
position, which is commonly used to alter swallowing
biomechanics in certain types of dysphagia. We also seek
to investigate whether there are differences in brain net-
works when individuals swallow using these two postures.
While studies have given a physiological explanation of
anatomical changes in the pharynx during the swallowing
chin-tuck position, it remains unclear whether or how this
maneuver affects brain activity. Investigating this brain
activity during swallowing could explain if better control
of swallowing in the chin-tuck position is simply due to
the artificially modified configuration of the oropharyn-
geal mechanism caused by the change in posture or if is
due to alterations in muscle activity caused by a trans-
formation in cerebral function prompted by the postural
change itself. Areas of brain damage induced by neu-
rological pathologies that cause dysphagia may overlap
with the brain regions involved in the control of swal-
lowing in the chin-tuck position. Defining characteristics
of the brain network and defining brain regions involved
in these commonly deployed compensatory maneuvers
could potentially explain if there is a central explanation
for the limited efficiency of this technique for eliminating
aspiration.
In addition, our investigation of small-world networks

during swallowing may provide insight into the informa-
tion transmission efficiency between groups of neurons
involved in these two swallowing tasks, while increas-
ing understanding of the differences in the small-world
properties of brain networks constructed from swallowing

in the neutral and chin-tuck head positions. We aim to
determine if better small-world properties of the brain
networks for swallowing in chin-tuck position provides
a neurological explanation as to why the chin-tuck head
position is an effective therapeutic technique for treating
dysphagia. Therefore, we hypothesized that brain net-
works in both the neutral and the chin-tuck head positions
have small-world properties, and that the brain network is
different for swallowing in the neutral head position when
compared with the brain network for swallowing in the
chin-tuck head position.

Methodology
Data acquisition from participants
Data was collected from 55 healthy subjects, aged from
18 to 65, all of whom provided informed consent, as well
as information about age, gender, height, and weight. The
protocol was approved by the Institutional Review Board
at the University of Pittsburgh.
In this study, signals were collected from 64 EEG

electrodes positioned according to the 10-20 interna-
tional electrode system [31]. Electrode positioning was
accomplished using the actiCAP active electrodes (Brain-
Products, Germany), and signal amplification was per-
formed using the actiCHamp amplifier (BrainProducts,
Germany). The P1 electrode was chosen as the reference
(i.e., EEG voltage potentials are referenced to P1). During
all data collections, the electrodes’ impedance was below
15 k�. The PyCorder acquisition software provided a 10
kHz sampling frequency, and this software was also used
for saving collected data on a computer hard drive. Dur-
ing EEG recording, a dual-axis accelerometer was used to
record vibratory correlates of pharyngeal motor activity
associated with individual swallows. It also provided tem-
poral evidence regarding the beginning and end of each
swallow event which was used to enable segmentation of
the EEG signals into swallow-specific data sets. It was
positioned on the anterior aspect of the neck at the level
of the cricoid cartilage of each participant. The method
for determining swallowing segments with the dual-axis
accelerometer is described in detail in one of our previous
studies [32]. After proper set-up of all EEG equipment was
complete, participants were asked to perform ten saliva
swallows in their self-selected time base between each
swallow, first five saliva swallows in the neutral head posi-
tion and then five saliva swallows in the chin-tuck head
position (Fig. 1).

Pre-processing steps
Collected data was pre-processed with the EEGlab MAT-
LAB toolbox [33]. All signals were downsampled to 256
Hz, and then band-pass filtered from 0.1 Hz to 100 Hz
with an elliptical infinite impulse response (IIR) filter.
Next, in order to remove noise associated with the power
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Fig. 1 The experimental procedure used in this study

supply, all signals were filtered with an elliptical IIR notch
filter with cut-off frequencies at 58 Hz to 62Hz. Individual
swallows were identified according to the segmentation
points provided by the accelerometer signal. Segmented
swallows were then visually inspected for the presence of
possible artifacts, which could be produced by electrode
activation from any source other than cerebral activity
(e.g., noisy nearby equipment and instruments, bodily
movement, etc. that can produce undesirable artifacts in
the EEG signal) [34]. All present artifacts were removed
using the Independent Component Analysis (ICA) algo-
rithm [35]. EEG data samples that contained an artifact
that could not be removed by the ICA algorithm without
significantly damaging the signal were excluded from the
study. Less than 5% of EEG data samples were excluded
due to excessive artifacts.

Network constructions
Pre-processed signals were filtered with an elliptic band-
pass filter into the commonly used frequency bands:
Delta (< 4 Hz), Theta (4 − 7 Hz), Alpha (8 − 15 Hz),
Beta (16 − 31 Hz), and Gamma (> 32 Hz). The time-
frequency based phase synchrony measure was used to
compute connectivity matrices for each of the bands of
interest.

Time-frequency based phase synchronymeasure
After pre-processing and segmentation of the EEG sig-
nals, connectivity matrices were formed by estimating
the synchrony between signal channels. There are several
methods which have been previously used for calculat-
ing the synchronization between signals pairs such as:
correlation, coherence, directed transfer function [36],
partial directed coherence [37], Granger causality [38],

etc. However, these methods are not suitable for dealing
with non-stationary signals. In one of our previous stud-
ies, we showed that EEG signals during the swallowing
activity are non-stationary [39]; therefore, for generating
connectivity matrices, we used the time-frequency based
phase synchrony measure method proposed by Aviyente
et al. [40]. This method is called the reduced interference
Rihaczek distribution.
Synchronization between any two signals can be esti-

mated as the instantaneous phase of the signals around
some desired frequency point. The signal in the time-
frequency domain can be represented as:

X(t,ω) = a(t)exp(j(ωt + φ(t))), (1)

where a(t) is the amplitude and φ(t) is the phase of the sig-
nal. From the vantage point of the time domain for some
desired frequency, the organization of two signals, x and
y, can be estimated by the difference in their phase:

�xy(t) = |nφx(t) − mφy(t)|, (2)

where n and m are ratios of the locking frequencies, and
φx and φy are phases of the signals x and y, respectively.
In the event where we have a signal which can be pre-

sented as a sum of independent signals, such as, s(t) =
s1(t) + s2(t), the Rihaczek time-frequency distribution is
defined as:

C(t,ω)= 1√
2π

e−jωt(s1(t)S∗
1(ω) + s2(t)S∗

2(ω) + s1(t)S∗
2(ω)

+ s2(t)S∗
1(ω)),

(3)

where S(ω) is the Fourier transform of the signal. The
last two terms in Eq. (3) are the cross-terms. The prob-
lem associated with cross terms is that they exist at the
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same time points as the original signal; furthermore, these
cross terms occupy the same frequency bands which are
occupied by the original signal. In order to remove the
cross-terms, the Choi-Williams (CW) kernel function,
which is defined as φ(θ , τ) = exp(−(θτ )2/σ), is applied to
the Rihaczek distribution [41]. As a result, we obtained the
reduced interference distribution of Rihaczek distribution
which can be written as:

C(t,ω) =
∫∫

e(−(θτ )2/σ)e(j(θτ )/2)A(θ , τ)e−j(θ t+τω)dτdθ ,

(4)

where A(θ , τ) = ∫
s(u + (τ/2))s∗(u − (τ/2))ejθudu. The

A(θ , τ) term is the ambiguity function of the original sig-
nal, and the e(j(θτ )/2) term is the kernel corresponding to
the Rihaczek distribution.
After defining the time-varying phase spectrum, the

phase difference between two signals is computed as:

�12(t,ω) = arg
[ C1(t,ω)C∗

2(t,ω)

|C1(t,ω)||C2(t,ω)|
]
. (5)

Calculated values for the phase difference between sig-
nal pairs are used for calculating the phase locking value
(PLV). PLV is a measure of the phase difference between
signal pairs, and it is defined as:

PLV (t,ω) = 1
N

∣∣∣∣∣
N∑
k=1

exp(j�k
12(t,ω))

∣∣∣∣∣ , (6)

where N is the number of trials. PLV has values in the
range from 0 to 1, inclusive. PLV values tend to be higher
when the phase difference does not vary significantly
between trials.

Network measures
The formed weighted undirected connectivity matrices
are typically converted into binary undirected matrices.
This study considers the use of binary undirected net-
works for the purpose of calculating network measures.
The constructed weighted undirected connectivity matri-
ces are thresholded in order to form binary networks. For
a binary undirected network, aij refers to the connection
between node i and node j. If a connection exists between
two nodes (i.e., node i and node j), then aij = 1, but if aij =
0, then there exists no connection between two nodes
(i.e., node i and node j). When comparing network mea-
sures, only matrices containing the same number of edges
can be considered. Because there is no single accepted
method for choosing a threshold value, we chose to form
binary networks by thresholding the weighted networks
according to the percent of the density of connections
(e.g., if a threshold is set to 10%, then 10% of the strongest
connections in the connectivity matrix will be assigned a
value of 1 while the remaining 90% connections will be

assigned a value of 0). In this study, binary networks were
constructed by thresholding from 5% (i.e., sparse connec-
tions) to 100% (i.e., full connections) of connections using
increments of 5%. For each of the constructed networks,
network measures were calculated and then compared to
extract differences and similarities between swallowing in
the neutral and chin-tuck head positions.
We used the Brain Connectivity Toolbox (BCT) [42]

running in MATLAB to calculate each of the discussed
network measures:

• The degree of the node,Di, is the number of the edges
that node i has with the rest of the nodes in the graph.
The degree parameter is one of the fundamental
network parameters in graph theory. Degree
distribution is the summation of the degrees of all
nodes from the network while the mean degree is the
average of all the degrees of all nodes in the network.

D = 1
N

∑
i∈N

Di, (7)

where N is the number of nodes.
• The clustering coefficient of the i-th node is Ci. The

clustering coefficient is a measure which describes
the ratio between the number of existing edges
between the nearest neighbor of the node and the
maximum number of possible edges [43]. For a binary
network, the clustering coefficient is calculated as:

Ci = 2Ei
Di(Di − 1)

, (8)

where Ei is the number of existing edges between
adjacent nodes to node i, and Di is the degree of the
i-th node. In the case of a random network, the
clustering coefficient is relatively low; whereas a
higher clustering coefficient is found in networks
which contain more densely connected clusters [44].
The mean clustering coefficient is defined as:

C = 1
N

N∑
j=1

Cj. (9)

• The shortest path length, Li, is the minimum number
of edges needed for one node to be connected to
another node [45, 46]. The mean shortest path length
is the average shortest length between all possible
combinations of only two nodes in the graph.
Mathematically, the mean shortest path length
between two nodes is defined as:

Li,j = 1
N(N − 1)

∑
i,j∈N ,i�=j

di,j, (10)

where di,j the shortest path length between node i and
node j. Furthermore, the characteristic path length is
calculated as the average of all shortest path lengths:
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L = 1
N

∑
i∈N

Li. (11)

• The local efficiency, Elocal, is defined as the mean of
the efficiencies of the subgraphs which are formed
from the neighborhoods of each node [47]. The local
efficiency can be calculated as:

Elocal = 1
N

∑
i∈N

E(Gi), (12)

where E(Gi) is the efficiency of the subgraph, Gi.

The clustering coefficient, C, and the mean characteris-
tic path length, L, are the two parameters used to describe
small-worldness. A network is considered to have small-
world properties if it is characterized by a high clustering
coefficient and short characteristic path length. Networks
with small-world properties will have high formations of
clustered subnetworks [48]. Mathematically, small-world
attributes should satisfy two conditions:

γ = C
Crandom

� 1, (13)

where γ is a normalized clustering coefficient, and

λ = L
Lrandom

≈ 1, (14)

where λ is a normalized characteristic path length.
Crandom and Lrandom are the mean clustering coefficient
and the mean characteristic path of the random network,
respectively. In order to calculate Crandom and Lrandom, we
generated 100 random networks using the Markov-chain
algorithm [24, 49]. From each random network we calcu-
lated the clustering coefficient and the characteristic path
length. Crandom and Lrandom are the averaged clustering
coefficient and the characteristic path length calculated
from each random graph. Finally, small-worldness is the
ratio between normalized clustering coefficient and nor-
malized characteristic path length:

S = C/Crandom
L/Lrandom

. (15)

If this ratio is higher than one (S > 1), it can be said that
network possess small-world properties.

Data analysis
To determine the categorical statistical differences
between features in different head positions, theWilcoxon
rank-sum test was used [50].

Results
We analyzed 252 swallows in the neutral head position,
and 233 swallows in the chin-tuck head position. Results
of the network measures are presented as a mean value ±
standard deviation, as a function of percent of network
connections.

Figure 2 summarizes the mean value of the clustering
coefficient for different connection densities (i.e., from
5% to 100%). The clustering coefficient did not exhibit
statistically significant differences between different head
positions for the Delta, Theta, and Beta frequency ranges
(p > 0.05). Swallowing in the chin-tuck head position
showed a higher clustering coefficient for a 30% connec-
tion density in theAlpha frequency range (p = 0.02)when
compared to swallowing in the neutral head position.
Furthermore, swallowing in the chin-tuck head position
showed a higher clustering coefficient for connection den-
sities of 40%, 45%, and 50% in the Gamma frequency
range (p < 0.03) when compared with swallowing in the
neutral head position.
Figure 3 summarizes the mean value of the character-

istic path length for different connection densities. For
connection densities of 20%, 30%, 35%, 40%, 45%, 50%,
55%, and 60% in the Alpha frequency range, swallowing
in the chin-tuck position showed a higher mean value of
the characteristic path length than swallowing in the neu-
tral head position (p < 0.05). In all other frequency bands
(i.e., Delta, Theta, Beta and Gamma bands) there were no
significant differences between different head positions
(p > 0.05).
Figure 4 summarizes the mean value for the local effi-

ciency, and Fig. 5 summarizes the mean normalized clus-
tering coefficient (C/Crandom), and the mean normalized
characteristic path length (L/Lrandom) for different con-
nection densities. None of these parameters showed sta-
tistically significant differences for the swallowing activity
in different head positions. However, it should be noted
from Fig. 5 that the ratio between the normalized clus-
tering coefficient and the normalized characteristic path
length is greater than one in both head positions. There-
fore, we can say that swallowing in both head position
exhibited small-world properties of the network.

Discussion
Our hypothesis that the constructed brain network for
swallowing in the neutral and chin-tuck head positions
has small-world properties was supported by our results.
However, our hypothesis that the brain network is differ-
ent for swallowing in the neutral head position compared
with the brain network constructed for swallowing in the
chin-tuck head position was partly supported for only
some features (i.e., clustering coefficient and characteris-
tic path length).
Our results did not show any statistical differences

between swallowing in the neutral and swallowing in
the chin-tuck head positions for the Delta, Theta, and
Beta frequency bands. Previous studies reported that the
Delta and Theta frequency bands activate during sen-
sory stimulation [51, 52]. Also, it was reported that the
Beta frequency band activates during anxious thinking
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Fig. 2 The value of mean clustering coefficient, C, for different threshold percentages and for different frequency bands

Fig. 3 The value of mean characteristic path length, L, for different threshold percentages and for different frequency bands
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Fig. 4 The value of local efficiency, El , for different threshold percentages and for different frequency bands

Fig. 5 The value of mean normalized clustering coefficient γ , and the mean normalized characteristic path length, λ, for different threshold
percentages and for different frequency bands
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and active concentration [53]. Therefore, we can say that
there is no difference in activation of the sensory receptors
between swallowing in the neutral and chin-tuck posi-
tions. Furthermore, there is no difference in the level of
required cognitive concentration between swallowing in
the neutral and chin-tuck positions with healthy patients.
Studies which previously investigated the origins of

the EEG frequency bands suggested that the Alpha EEG
band is associated with the inhibitory control required
for efficient performance of cognitive and motor tasks
[54–56], while the Gamma EEG frequency band is asso-
ciated with the performance of cognitive and motor tasks
[57–59]. Our results showed differences in the Alpha and
Gamma EEG bands for both the clustering coefficient
and the characteristic path length for the chin-tuck head
position compared with the neutral head position. These
results could be attributed to the higher cognitive demand
and inhibition of the swallowing task in the chin-tuck
head position. Even though the chin-tuck postural tech-
nique is considered a comfortable maneuver for patients,
swallowing in the chin-tuck position is not natural. The
unnatural position used when performing the chin-tuck
technique results in changes in the pharyngeal dimen-
sions [60]. These pharyngeal dimensional changes affect
the attention and evoke the inhibition of the person who is
performing swallowing in the chin-tuck position as well as
potentially altering afferent and the resultant efferent sig-
nals emanating to and from the cerebral centers involved
in processing the sensorimotor activities involved in each
of the two conditions.While most aspects of normal swal-
lowing in healthy people occur spontaneously (i.e., with
no conscious effort), swallowing in the chin-tuck position
demands additional cognitive contributions. Chin-tuck
position swallowing recruits additional neural regions in
the brain because this type of swallowing carries a higher
cognitive demand and attention to a swallowing activ-
ity and a higher degree of inhibition, which explains the
differences in our results.
A higher clustering coefficient for swallowing in the

chin-tuck head position in the Gamma EEG frequency
band could also be attributed to changes inmuscle recruit-
ment for this position. The Gamma EEG frequency band
is well known to be modulated by muscular recruitment
demands [57–59]. During swallowing in the chin-tuck
position, the various regional muscles exhibit different
pre-contraction lengths due to the altered configuration of
the pharynx, which can produce a change in the resultant
force of their contraction [15, 58]. This change leads to a
possible explanation of the differences that we found in
the Gamma EEG band between these two head positions.
This means that decreased muscular recruitment in the
chin-tuck head position correlates to greater functional
connectivity in the brain, as evidenced by a higher clus-
tering coefficient for the Gamma EEG frequency band,

when compared with the neutral head position. That is to
say, changes in posture that reduce muscular control for a
swallowing taskmay increase the central functional motor
control for the swallowing task in the brain.
A shortcoming of this study is that participants were

instructed to perform five consecutive swallows in quick
succession, which limiting the amount of saliva that can
accumulate between swallows. It is possible that saliva-
bolus volumes differed as a result of the allotted time
for re-accumulation of saliva during the data collections
for swallowing tasks. Also, we did not counterbalance the
order of the two experimental positions, the chin-tuck
and control (i.e. neutral posture) positions, when par-
ticipants were swallowing. In order to overcome these
limitations, future studies should investigate swallowing
activities with other fluids using a specific bolus volume
and consistency (e.g., water, nectar-thick, and honey-thick
juice), or sufficiently allow saliva to re-accumulate to a
specific range of volume, as well as imposing a random or
counterbalanced order of presentation of the conditions.
Also, it has been reported that swallowing saliva involves
more cortical activity across the age-span and in dis-
ease than swallowing water or barium [61, 62]. Therefore,
this issue should be considered in future investigations.
Furthermore, a future study could also investigate differ-
ences in the brain networks constructed for each of the
consecutive swallows.
Graph theory is a powerful technique which enables

thorough analysis of brain functional connectivity and
provides deep insight into brain activity. Analysis of brain
function is obtained by mathematical calculation of the
network measures that describe the architectural proper-
ties of the network. Besides the network measures that
were used in this study (i.e., node degree, clustering coeffi-
cient, the shortest path length, and local efficiency), there
are a number of other features (e.g., transitivity, modular-
ity, network motifs, network graphlets, etc.) which could
provide more distinctive information about a network’s
architecture. Therefore, future swallowing studies should
also consider network analysis using other features.

Conclusion
In this study we investigated the differences between
constructed brain networks corresponding to saliva swal-
lows in both the neutral and chin-tuck head positions.
Swallowing EEG signals were collected from 55 healthy
adults, each of whom performed five saliva swallows in
both of these head positions. We demonstrated that the
constructed brain networks corresponding to these two
tasks have small-world properties, which indicates that
swallowing in either head position has optimal architec-
tural organization and provides efficient communication
between different brain regions for their respective task
demands, and that neither disadvantageously disrupts
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connectivity between and among brain regions in healthy
people. Clinically, we have observed patients with various
neurological conditions fail to benefit from the chin-down
posture despite being good candidates for its use on the
basis of their swallowing impairment. It would be worth-
while to investigate this question in pathological states to
elucidate the clinical importance of these findings in dys-
phagic patients and to determine whether the chin-down
posture indeed maintains optimal architectural organiza-
tion and regional connectivity among brain regions.
We also demonstrated that there exists a difference

between swallowing in the neutral and chin-tuck posi-
tions within the Alpha and Gamma frequency bands.
This difference implies that swallowing in the chin-tuck
head position may modify central processing of swallow-
ing sensorimotor circuits by either changing direct motor
output, or through the influence of cognitive activity
required for posturing. As a result, the cognitive impacts
of the participant’s head position should be considered in
future investigations concerning swallowing. Again, fur-
ther investigation of this hypothesis in pathological states
is warranted.
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