633 research outputs found
Nonlinear Instability of kink oscillations due to shear motions
First results from a high-resolution three-dimensional nonlinear numerical
study of the kink oscillation are presented. We show in detail the development
of a shear instability in an untwisted line-tied magnetic flux tube. The
instability produces significant deformations of the tube boundary. An extended
transition layer may naturally evolve as a result of the shear instability at a
sharp transition between the flux tube and the external medium. We also discuss
the possible effects of the instability on the process of resonant absorption
when an inhomogeneous layer is included in the model. One of the implications
of these results is that the azimuthal component of the magnetic field of a
stable flux tube in the solar corona, needed to prevent the shear instability,
is probably constrained to be in a very specific range
Three-Dimensional Propagation of Magnetohydrodynamic Waves in Solar Coronal Arcades
We numerically investigate the excitation and temporal evolution of
oscillations in a two-dimensional coronal arcade by including the
three-dimensional propagation of perturbations. The time evolution of
impulsively generated perturbations is studied by solving the linear, ideal
magnetohydrodynamic (MHD) equations in the zero-beta approximation. As we
neglect gas pressure the slow mode is absent and therefore only coupled MHD
fast and Alfven modes remain. Two types of numerical experiments are performed.
First, the resonant wave energy transfer between a fast normal mode of the
system and local Alfven waves is analyzed. It is seen how, because of resonant
coupling, the fast wave with global character transfers its energy to Alfvenic
oscillations localized around a particular magnetic surface within the arcade,
thus producing the damping of the initial fast MHD mode. Second, the time
evolution of a localized impulsive excitation, trying to mimic a nearby coronal
disturbance, is considered. In this case, the generated fast wavefront leaves
its energy on several magnetic surfaces within the arcade. The system is
therefore able to trap energy in the form of Alfvenic oscillations, even in the
absence of a density enhancement such as that of a coronal loop. These local
oscillations are subsequently phase-mixed to smaller spatial scales. The amount
of wave energy trapped by the system via wave energy conversion strongly
depends on the wavelength of perturbations in the perpendicular direction, but
is almost independent from the ratio of the magnetic to density scale heights.Comment: 27 pages, 11 figure
Magnetohydrodynamic kink waves in two-dimensional non-uniform prominence threads
We analyse the oscillatory properties of resonantly damped transverse kink
oscillations in two-dimensional prominence threads. The fine structures are
modelled as cylindrically symmetric magnetic flux tubes with a dense central
part with prominence plasma properties and an evacuated part, both surrounded
by coronal plasma. The equilibrium density is allowed to vary non-uniformly in
both the transverse and the longitudinal directions.We examine the influence of
longitudinal density structuring on periods, damping times, and damping rates
for transverse kink modes computed by numerically solving the linear resistive
magnetohydrodynamic (MHD) equations. The relevant parameters are the length of
the thread and the density in the evacuated part of the tube, two quantities
that are difficult to directly estimate from observations. We find that both of
them strongly influence the oscillatory periods and damping times, and to a
lesser extent the damping ratios. The analysis of the spatial distribution of
perturbations and of the energy flux into the resonances allows us to explain
the obtained damping times. Implications for prominence seismology, the physics
of resonantly damped kink modes in two-dimensional magnetic flux tubes, and the
heating of prominence plasmas are discussed.Comment: 12 pages, 9 figures, A&A accepte
Seismology of Standing Kink Oscillations of Solar Prominence Fine Structures
We investigate standing kink magnetohydrodynamic (MHD) oscillations in a
prominence fine structure modeled as a straight and cylindrical magnetic tube
only partially filled with the prominence material, and with its ends fixed at
two rigid walls representing the solar photosphere. The prominence plasma is
partially ionized and a transverse inhomogeneous transitional layer is included
between the prominence thread and the coronal medium. Thus, ion-neutral
collisions and resonant absorption are the considered damping mechanisms.
Approximate analytical expressions of the period, the damping time, and their
ratio are derived for the fundamental mode in the thin tube and thin boundary
approximations. We find that the dominant damping mechanism is resonant
absorption, which provides damping ratios in agreement with the observations,
whereas ion-neutral collisions are irrelevant for the damping. The values of
the damping ratio are independent of both the prominence thread length and its
position within the magnetic tube, and coincide with the values for a tube
fully filled with the prominence plasma. The implications of our results in the
context of the MHD seismology technique are discussed, pointing out that the
reported short-period (2 - 10 min) and short-wavelength (700 - 8,000 km) thread
oscillations may not be consistent with a standing mode interpretation and
could be related to propagating waves. Finally, we show that the inversion of
some prominence physical parameters, e.g., Alfv\'en speed, magnetic field
strength, transverse inhomogeneity length-scale, etc., is possible using
observationally determined values of the period and damping time of the
oscillations along with the analytical approximations of these quantities.Comment: Accepted for publication in Ap
The role of Rayleigh-Taylor instabilities in filament threads
Many solar filaments and prominences show short-lived horizontal threads
lying parallel to the photosphere. In this work the possible link between
Rayleigh-Taylor instabilities and thread lifetimes is investigated. This is
done by calculating the eigenmodes of a thread modelled as a Cartesian slab
under the presence of gravity. An analytical dispersion relation is derived
using the incompressible assumption for the magnetohydrodynamic (MHD)
perturbations. The system allows a mode that is always stable, independently of
the value of the Alfv\'en speed in the thread. The character of this mode
varies from being localised at the upper interface of the slab when the
magnetic field is weak, to having a global nature and resembling the transverse
kink mode when the magnetic field is strong. On the contrary, the slab model
permits another mode that is unstable and localised at the lower interface when
the magnetic field is weak. The growth rates of this mode can be very short, of
the order of minutes for typical thread conditions. This Rayleigh-Taylor
unstable mode becomes stable when the magnetic field is increased, and in the
limit of strong magnetic field it is essentially a sausage magnetic mode. The
gravity force might have a strong effect on the modes of oscillation of
threads, depending on the value of the Alfv\'en speed. In the case of threads
in quiescent filaments, where the Alfv\'en speed is presumably low, very short
lifetimes are expected according to the slab model. In active region
prominences, the stabilising effect of the magnetic tension might be enough to
suppress the Rayleigh-Taylor instability for a wide range of wavelengths
On the nature of kink MHD waves in magnetic flux tubes
Magnetohydrodynamic (MHD) waves are often reported in the solar atmosphere
and usually classified as slow, fast, or Alfv\'en. The possibility that these
waves have mixed properties is often ignored. The goal of this work is to study
and determine the nature of MHD kink waves. This is done by calculating the
frequency, the damping rate and the eigenfunctions of MHD kink waves for three
widely different MHD waves cases: a compressible pressure-less plasma, an
incompressible plasma and a compressible plasma with non-zero plasma pressure
which allows for MHD radiation. In all three cases the frequency and the
damping rate are for practical purposes the same as they differ at most by
terms proportional to . In the magnetic flux tube the kink waves are
in all three cases, to a high degree of accuracy incompressible waves with
negligible pressure perturbations and with mainly horizontal motions. The main
restoring force of kink waves in the magnetised flux tube is the magnetic
tension force. The total pressure gradient force cannot be neglected except
when the frequency of the kink wave is equal or slightly differs from the local
Alfv\'{e}n frequency, i.e. in the resonant layer. Kink waves are very robust
and do not care about the details of the MHD wave environment. The adjective
fast is not the correct adjective to characterise kink waves. If an adjective
is to be used it should be Alfv\'{e}nic. However, it is better to realize that
kink waves have mixed properties and cannot be put in one single box
The Thermal Instability of Solar Prominence Threads
The fine structure of solar prominences and filaments appears as thin and
long threads in high-resolution images. In H-alpha observations of filaments,
some threads can be observed for only 5 - 20 minutes before they seem to fade
and eventually disappear, suggesting that these threads may have very short
lifetimes. The presence of an instability might be the cause of this quick
disappearance. Here, we study the thermal instability of prominence threads as
an explanation of their sudden disappearance from H-alpha observations. We
model a prominence thread as a magnetic tube with prominence conditions
embedded in a coronal environment. We assume a variation of the physical
properties in the transverse direction, so that the temperature and density
continuously change from internal to external values in an inhomogeneous
transitional layer representing the particular prominence-corona transition
region (PCTR) of the thread. We use the nonadiabatic and resistive
magnetohydrodynamic equations, which include terms due to thermal conduction
parallel and perpendicular to the magnetic field, radiative losses, heating,
and magnetic diffusion. We combine both analytical and numerical methods to
study linear perturbations from the equilibrium state, focusing on unstable
thermal solutions. We find that thermal modes are unstable in the PCTR for
temperatures higher than 80,000 K, approximately. These modes are related to
temperature disturbances that can lead to changes in the equilibrium due to
rapid plasma heating or cooling. For typical prominence parameters, the
instability time scale is of the order of a few minutes and is independent of
the form of the temperature profile within the PCTR of the thread. This result
indicates that thermal instability may play an important role for the short
lifetimes of threads in the observations.Comment: Accepted for publication in Ap
Resonantly Damped Kink Magnetohydrodynamic Waves in a Partially Ionized Filament Thread
Transverse oscillations of solar filament and prominence threads have been
frequently reported. These oscillations have the common features of being of
short period (2-10 min) and being damped after a few periods. Kink
magnetohydrodynamic (MHD) wave modes have been proposed as responsible for the
observed oscillations, whereas resonant absorption in the Alfven continuum and
ion-neutral collisions are the best candidates to be the damping mechanisms.
Here, we study both analytically and numerically the time damping of kink MHD
waves in a cylindrical, partially ionized filament thread embedded in a coronal
environment. The thread model is composed of a straight and thin, homogeneous
filament plasma, with a transverse inhomogeneous transitional layer where the
plasma physical properties vary continuously from filament to coronal
conditions. The magnetic field is homogeneous and parallel to the thread axis.
We find that the kink mode is efficiently damped by resonant absorption for
typical wavelengths of filament oscillations, the damping times being
compatible with the observations. Partial ionization does not affect the
process of resonant absorption, and the filament plasma ionization degree is
only important for the damping for wavelengths much shorter than those
observed. To our knowledge, this is the first time that the phenomenon of
resonant absorption is studied in a partially ionized plasma.Comment: Submitted in Ap
Magnetohydrodynamic Waves in a Partially Ionized Filament Thread
Oscillations and propagating waves are commonly seen in high-resolution
observations of filament threads, i.e., the fine-structures of solar
filaments/prominences. Since the temperature of prominences is typically of the
order of 10^4 K, the prominence plasma is only partially ionized. In this
paper, we study the effect of neutrals on the wave propagation in a filament
thread modeled as a partially ionized homogeneous magnetic flux tube embedded
in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar
magnetic diffusion are considered in the basic resistive MHD equations. We
numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD
modes, and obtain analytical approximations in some cases. We find that the
existence of propagating modes is constrained by the presence of critical
values of the longitudinal wavenumber. In particular, the lower and upper
frequency cut-offs of kink and Alfven waves owe their existence to magnetic
diffusion parallel and perpendicular to magnetic field lines, respectively. The
slow mode only has a lower frequency cut-off, which is caused by perpendicular
magnetic diffusion and is significantly affected by the ionization degree. In
addition, ion-neutral collisions is the most efficient damping mechanism for
short wavelengths while ohmic diffusion dominates in the long-wavelength
regime.Comment: Accepted for publication in Ap
Resonantly damped surface and body MHD waves in a solar coronal slab with oblique propagation
The theory of magnetohydrodynamic (MHD) waves in solar coronal slabs in a
zero- configuration and for parallel propagation of waves does not allow
the existence of surface waves. When oblique propagation of perturbations is
considered both surface and body waves are able to propagate. When the
perpendicular wave number is larger than a certain value, the body kink mode
becomes a surface wave. In addition, a sausage surface mode is found below the
internal cut-off frequency. When non-uniformity in the equilibrium is included,
surface and body modes are damped due to resonant absorption. In this paper,
first, a normal-mode analysis is performed and the period, the damping rate,
and the spatial structure of eigenfunctions are obtained. Then, the
time-dependent problem is solved, and the conditions under which one or the
other type of mode is excited are investigated.Comment: 19 pages, 9 figures, accepted for publication in Solar Physic
- …
