317 research outputs found

    Pre-collegiate Education in Utopia

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/163531/1/IMaGeMonograph25.pdfb2c2c9fd-ee9d-4e83-89fe-dc520ef84368Description of IMaGeMonograph25.pdf : Pre-collegiate education in UtopiaSEL

    Solstice: An Electronic Journal of Geography and Mathematics: Vol. 31, No. 2

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163731/1/SolsticeVolumeXXXINumber2.pdfd0a18e86-7d9e-4669-812b-ead353cc4899b2c2c9fd-ee9d-4e83-89fe-dc520ef84368Description of SolsticeVolumeXXXINumber2.pdf : Solstice, Vol. XXXI, No. 2.SEL

    Buffers and Duality

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60252/1/Reprint97Jacobs.pd

    The future of recreational fisheries: Advances in science, monitoring, management, and practice

    Get PDF
    Recreational fisheries (RF) are complex social-ecological systems that play an important role in aquatic environments while generating significant social and economic benefits around the world. The nature of RF is diverse and rapidly evolving, including the participants, their priorities and behaviors, and the related ecological impacts and social and economic benefits. RF can lead to negative ecological impacts, particularly through overexploitation of fish populations and spread of non-native species and genotypes through stocking. Hence, careful management and monitoring of RF is essential to sustain these ecologically and socioeconomically important resources. This special issue on recreational fisheries contains diverse research, syntheses, and perspectives that highlight the advances being made in RF research, monitoring, management, and practice, which we summarize here. Co-management actions are rising, often involving diverse interest groups including government and non-government organizations; applying collaborative management practices can help balance social and economic benefits with conservation targets. Technological and methodological advances are improving the ability to monitor biological, social, and economic dynamics of RF, which underpin the ability to maximize RF benefits through management actions. To ensure RF sustainability, much research focuses on the ecological aspects of RF, as well as the development of management and angling practices that reduce negative impacts on fish populations. For example, angler behavior can be influenced to conform to conservation-minded angling practices through regulations, but is often best accomplished through growing bottom-up social change movements. Anglers can also play an important role in fisheries monitoring and conservation, including providing data on fish abundance and assemblages (i.e., citizen science). The increasing impacts that growing human populations are having on the global environment are threatening many of the natural resources and ecosystem services they provide, including valuable RF. However, with careful development of research initiatives, monitoring and management, sustainable RF can generate positive outcomes for both society and natural ecosystems and help solve allocation conflicts with commercial fisheries and conservation

    The future of recreational fisheries: Advances in science, monitoring, management, and practice

    Get PDF
    Recreational fisheries (RF) are complex social-ecological systems that play an important role in aquatic environments while generating significant social and economic benefits around the world. The nature of RF is diverse and rapidly evolving, including the participants, their priorities and behaviors, and the related ecological impacts and social and economic benefits. RF can lead to negative ecological impacts, particularly through overexploitation of fish populations and spread of non-native species and genotypes through stocking. Hence, careful management and monitoring of RF is essential to sustain these ecologically and socioeconomically important resources. This special issue on recreational fisheries contains diverse research, syntheses, and perspectives that highlight the advances being made in RF research, monitoring, management, and practice, which we summarize here. Co-management actions are rising, often involving diverse interest groups including government and non-government organizations; applying collaborative management practices can help balance social and economic benefits with conservation targets. Technological and methodological advances are improving the ability to monitor biological, social, and economic dynamics of RF, which underpin the ability to maximize RF benefits through management actions. To ensure RF sustainability, much research focuses on the ecological aspects of RF, as well as the development of management and angling practices that reduce negative impacts on fish populations. For example, angler behavior can be influenced to conform to conservation-minded angling practices through regulations, but is often best accomplished through growing bottom-up social change movements. Anglers can also play an important role in fisheries monitoring and conservation, including providing data on fish abundance and assemblages (i.e., citizen science). The increasing impacts that growing human populations are having on the global environment are threatening many of the natural resources and ecosystem services they provide, including valuable RF. However, with careful development of research initiatives, monitoring and management, sustainable RF can generate positive outcomes for both society and natural ecosystems and help solve allocation conflicts with commercial fisheries and conservation

    Citizen science technologies and new opportunities for participation

    Get PDF
    Citizen science, the active participation of the public in scientific research projects, is a rapidly expanding field in open science and open innovation. It provides an integrated model of public knowledge production and engagement with science. As a growing worldwide phenomenon, it is invigorated by evolving new technologies that connect people easily and effectively with the scientific community. Catalysed by citizens’ wishes to be actively involved in scientific processes, as a result of recent societal trends, it also offers contributions to the rise in tertiary education. In addition, citizen science provides a valuable tool for citizens to play a more active role in sustainable development. This book identifies and explains the role of citizen science within innovation in science and society, and as a vibrant and productive science-policy interface. The scope of this volume is global, geared towards identifying solutions and lessons to be applied across science, practice and policy. The chapters consider the role of citizen science in the context of the wider agenda of open science and open innovation, and discuss progress towards responsible research and innovation, two of the most critical aspects of science today

    Socio-economic drivers of specialist anglers targeting the non-native European catfish (Silurus glanis) in the UK.

    Get PDF
    Information about the socioeconomic drivers of Silurus glanis anglers in the UK were collected using questionnaires from a cross section of mixed cyprinid fisheries to elucidate human dimensions in angling and non-native fisheries management. Respondents were predominantly male (95%), 30-40 years of age with £500 per annum. The proportion of time spent angling for S. glanis was significantly related to angler motivations; fish size, challenge in catch, tranquil natural surroundings, escape from daily stress and to be alone were considered important drivers of increased time spent angling. Overall, poor awareness of: the risks and adverse ecological impacts associated with introduced S. glanis, non-native fisheries legislation, problems in use of unlimited ground bait and high fish stocking rates in angling lakes were evident, possibly related to inadequate training and information provided by angling organisations to anglers, as many stated that they were insufficiently informed

    Controlled wave-packet manipulation with driven optical lattices

    Full text link
    Motivated by recent experimental progress achieved with ultracold atoms in kilohertz-driven optical lattices, we provide a theoretical discussion of mechanisms governing the response of a particle in a cosine lattice potential to strong forcing pulses with smooth envelope. Such pulses effectuate adiabatic motion of a wave packet's momentum distribution on quasienergy surfaces created by spatiotemporal Bloch waves. Deviations from adiabaticity can then deliberately be exploited for exerting coherent control and for reaching target states which may not be accessible by other means. As one particular example, we consider an analog of the \pi-pulses known from optical resonance. We also suggest adapting further techniques previously developed for controlling atomic and molecular dynamics by laser pulses to the coherent control of matter waves in shaken optical lattices.Comment: 11 pages, 10 figure

    Toward Uniform Implementation Of Parametric Map Digital Imaging And Communication In Medicine Standard In Multisite Quantitative Diffusion Imaging Studies

    Get PDF
    This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation
    corecore