375 research outputs found
RAM-Efficient External Memory Sorting
In recent years a large number of problems have been considered in external
memory models of computation, where the complexity measure is the number of
blocks of data that are moved between slow external memory and fast internal
memory (also called I/Os). In practice, however, internal memory time often
dominates the total running time once I/O-efficiency has been obtained. In this
paper we study algorithms for fundamental problems that are simultaneously
I/O-efficient and internal memory efficient in the RAM model of computation.Comment: To appear in Proceedings of ISAAC 2013, getting the Best Paper Awar
The radial evolution of solar wind speeds
The WSA-ENLIL model predicts significant evolution of the solar wind speed. Along a flux tube the solar wind speed at 1.0 AU and beyond is found to be significantly altered from the solar wind speed in the outer corona at 0.1 AU, with most of the change occurring within a few tenths of an AU from the Sun. The evolution of the solar wind speed is most pronounced during solar minimum for solar wind with observed speeds at 1.0 AU between 400 and 500 km/s, while the fastest and slowest solar wind experiences little acceleration or deceleration. Solar wind ionic charge state observations made near 1.0 AU during solar minimum are found to be consistent with a large fraction of the intermediate-speed solar wind having been accelerated or decelerated from slower or faster speeds. This paper sets the groundwork for understanding the evolution of wind speed with distance, which is critical for interpreting the solar wind composition observations near Earth and throughout the inner heliosphere. We show from composition observations that the intermediate-speed solar wind (400-500 km/s) represents a mix of what was originally fast and slow solar wind, which implies a more bimodal solar wind in the corona than observed at 1.0 AU
Recommended from our members
Analysis of the magnetic field discontinuity at the potential field source surface and Schatten Current Sheet interface in the Wang–Sheeley–Arge model
A Bulk-Parallel Priority Queue in External Memory with STXXL
We propose the design and an implementation of a bulk-parallel external
memory priority queue to take advantage of both shared-memory parallelism and
high external memory transfer speeds to parallel disks. To achieve higher
performance by decoupling item insertions and extractions, we offer two
parallelization interfaces: one using "bulk" sequences, the other by defining
"limit" items. In the design, we discuss how to parallelize insertions using
multiple heaps, and how to calculate a dynamic prediction sequence to prefetch
blocks and apply parallel multiway merge for extraction. Our experimental
results show that in the selected benchmarks the priority queue reaches 75% of
the full parallel I/O bandwidth of rotational disks and and 65% of SSDs, or the
speed of sorting in external memory when bounded by computation.Comment: extended version of SEA'15 conference pape
Recommended from our members
The distribution of solar wind speeds during solar minimum: calibration for numerical solar wind modeling constraints on the source of the slow solar wind
It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the solar wind in the inner corona using the Wang-Sheeley-Arge (WSA) coronal model incorporating a new empirical magnetic topology–velocity relationship calibrated for use at 0.1 AU. In this study the empirical solar wind speed relationship was determined by using Helios perihelion observations, along with results from Riley et al. (2003) and Schwadron et al. (2005) as constraints. The new relationship was tested by using it to drive the ENLIL 3-D MHD solar wind model and obtain solar wind parameters at Earth (1.0 AU) and Ulysses (1.4 AU). The improvements in speed, its variability, and the occurrence of high-speed enhancements provide confidence that the new velocity relationship better determines the solar wind speed in the outer corona (0.1 AU). An analysis of this improved velocity field within the WSA model suggests the existence of two distinct mechanisms of the solar wind generation, one for fast and one for slow solar wind, implying that a combination of present theories may be necessary to explain solar wind observations
Querying Probabilistic Neighborhoods in Spatial Data Sets Efficiently
In this paper we define the notion
of a probabilistic neighborhood in spatial data: Let a set of points in
, a query point , a distance metric \dist,
and a monotonically decreasing function be
given. Then a point belongs to the probabilistic neighborhood of with respect to with probability f(\dist(p,q)). We envision
applications in facility location, sensor networks, and other scenarios where a
connection between two entities becomes less likely with increasing distance. A
straightforward query algorithm would determine a probabilistic neighborhood in
time by probing each point in .
To answer the query in sublinear time for the planar case, we augment a
quadtree suitably and design a corresponding query algorithm. Our theoretical
analysis shows that -- for certain distributions of planar -- our algorithm
answers a query in time with high probability
(whp). This matches up to a logarithmic factor the cost induced by
quadtree-based algorithms for deterministic queries and is asymptotically
faster than the straightforward approach whenever .
As practical proofs of concept we use two applications, one in the Euclidean
and one in the hyperbolic plane. In particular, our results yield the first
generator for random hyperbolic graphs with arbitrary temperatures in
subquadratic time. Moreover, our experimental data show the usefulness of our
algorithm even if the point distribution is unknown or not uniform: The running
time savings over the pairwise probing approach constitute at least one order
of magnitude already for a modest number of points and queries.Comment: The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-44543-4_3
Optimal Color Range Reporting in One Dimension
Color (or categorical) range reporting is a variant of the orthogonal range
reporting problem in which every point in the input is assigned a \emph{color}.
While the answer to an orthogonal point reporting query contains all points in
the query range , the answer to a color reporting query contains only
distinct colors of points in . In this paper we describe an O(N)-space data
structure that answers one-dimensional color reporting queries in optimal
time, where is the number of colors in the answer and is the
number of points in the data structure. Our result can be also dynamized and
extended to the external memory model
Compressed Data Structures for Dynamic Sequences
We consider the problem of storing a dynamic string over an alphabet
in compressed form. Our representation
supports insertions and deletions of symbols and answers three fundamental
queries: returns the -th symbol in ,
counts how many times a symbol occurs among the
first positions in , and finds the position
where a symbol occurs for the -th time. We present the first
fully-dynamic data structure for arbitrarily large alphabets that achieves
optimal query times for all three operations and supports updates with
worst-case time guarantees. Ours is also the first fully-dynamic data structure
that needs only bits, where is the -th order
entropy and is the string length. Moreover our representation supports
extraction of a substring in optimal time
Variabilidade genético-molecular de acessos de porta-enxertos de pessegueiros coletados nos municípios de pelotas e Morro Redondo-RS.
Comparação de abordagens bayesianas de estrutura genética sob populações em diferentes taxas de variabilidade e diversidade.
- …
