486 research outputs found

    Residual Votes Attributable to Technology: An Assessment of the Reliability of Existing Voting Equipment

    Get PDF
    American elections are conducted using a hodge-podge of different voting technologies: paper ballots, lever machines, punch cards, optically scanned ballots, and electronic machines. And the technologies we use change frequently. Over the last two decades, counties have moved away from paper ballots and lever machines and toward optically scanned ballots and electronic machines. The changes have not occurred from a concerted initiative, but from local experimentation. Some local governments have even opted to go back to the older methods of paper and levers

    HIV-1 with Multiple CCR5/CXCR4 Chimeric Receptor Use Is Predictive of Immunological Failure in Infected Children

    Get PDF
    BACKGROUND: HIV-1 R5 viruses are characterized by a large phenotypic variation, that is reflected by the mode of coreceptor use. The ability of R5 HIV-1 to infect target cells expressing chimeric receptors between CCR5 and CXCR4 (R5(broad) viruses), was shown to correlate with disease stage in HIV-1 infected adults. Here, we ask the question whether phenotypic variation of R5 viruses could play a role also in mother-to-child transmission (MTCT) of HIV-1 and pediatric disease progression. METHODOLOGY/PRINCIPAL FINDINGS: Viral isolates obtained from a total of 59 HIV-1 seropositive women (24 transmitting and 35 non transmitting) and 28 infected newborn children, were used to infect U87.CD4 cells expressing wild type or six different CCR5/CXCR4 chimeric receptors. HIV-1 isolates obtained from newborn infants had predominantly R5(narrow) phenotype (n = 20), but R5(broad) and R5X4 viruses were also found in seven and one case, respectively. The presence of R5(broad) and R5X4 phenotypes correlated significantly with a severe decline of the CD4+ T cells (CDC stage 3) or death within 2 years of age. Forty-three percent of the maternal R5 isolates displayed an R5(broad) phenotype, however, the presence of the R5(broad) virus was not predictive for MTCT of HIV-1. Of interest, while only 1 of 5 mothers with an R5X4 virus transmitted the dualtropic virus, 5 of 6 mothers carrying R5(broad) viruses transmitted viruses with a similar broad chimeric coreceptor usage. Thus, the maternal R5(broad) phenotype was largely preserved during transmission and could be predictive of the phenotype of the newborn's viral variant. CONCLUSIONS/SIGNIFICANCE: Our results show that R5(broad) viruses are not hampered in transmission. When transmitted, immunological failure occurs earlier than in children infected with HIV-1 of R5(narrow) phenotype. We believe that this finding is of utmost relevance for therapeutic interventions in pediatric HIV-1 infectio

    Human Skin Microbiota: High Diversity of DNA Viruses Identified on the Human Skin by High Throughput Sequencing

    Get PDF
    The human skin is a complex ecosystem that hosts a heterogeneous flora. Until recently, the diversity of the cutaneous microbiota was mainly investigated for bacteria through culture based assays subsequently confirmed by molecular techniques. There are now many evidences that viruses represent a significant part of the cutaneous flora as demonstrated by the asymptomatic carriage of beta and gamma-human papillomaviruses on the healthy skin. Furthermore, it has been recently suggested that some representatives of the Polyomavirus genus might share a similar feature. In the present study, the cutaneous virome of the surface of the normal-appearing skin from five healthy individuals and one patient with Merkel cell carcinoma was investigated through a high throughput metagenomic sequencing approach in an attempt to provide a thorough description of the cutaneous flora, with a particular focus on its viral component. The results emphasize the high diversity of the viral cutaneous flora with multiple polyomaviruses, papillomaviruses and circoviruses being detected on normal-appearing skin. Moreover, this approach resulted in the identification of new Papillomavirus and Circovirus genomes and confirmed a very low level of genetic diversity within human polyomavirus species. Although viruses are generally considered as pathogen agents, our findings support the existence of a complex viral flora present at the surface of healthy-appearing human skin in various individuals. The dynamics and anatomical variations of this skin virome and its variations according to pathological conditions remain to be further studied. The potential involvement of these viruses, alone or in combination, in skin proliferative disorders and oncogenesis is another crucial issue to be elucidated

    Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection

    Get PDF
    Abstract: Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. Author Summary: A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death

    Characterization of Novel Cutaneous Human Papillomavirus Genotypes HPV-150 and HPV-151

    Get PDF
    DNA from two novel HPV genotypes, HPV-150 and HPV-151, isolated from hair follicles of immuno-competent individuals, was fully cloned, sequenced and characterized. The complete genomes of HPV-150 and HPV-151 are 7,436-bp and 7,386-bp in length, respectively. Both contain genes for at least six proteins, namely E6, E7, E1, E2, L2, L1, as well as a non-coding upstream regulatory region located between the L1 and E6 genes: spanning 416-bp in HPV-150 (genomic positions 7,371 to 350) and 322-bp in HPV-151 (genomic positions 7,213 to 148). HPV-150 and HPV-151 are phylogenetically placed within the Betapapillomavirus genus and are most closely related to HPV-96 and HPV-22, respectively. As in other members of this genus, the intergenic E2-L2 region is very short and does not encode for an E5 gene. Both genotypes contain typical zinc binding domains in their E6 and E7 proteins, but HPV-151 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of the novel genotypes, quantitative type-specific real-time PCR assays were developed. The 95% detection limits of the HPV-150 and HPV-151 assays were 7.3 copies/reaction (range 5.6 to 11.4) and 3.4 copies/reaction (range 2.5 to 6.0), respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (total of 540 samples) revealed that HPV-150 and HPV-151 are relatively rare genotypes with a cutaneous tropism. Both genotypes were found in sporadic cases of common warts and SCC and BCC of the skin as single or multiple infections usually with low viral loads. HPV-150 can establish persistent infection of hair follicles in immuno-competent individuals. A partial L1 sequence of a putative novel HPV genotype, related to HPV-150, was identified in a squamous cell carcinoma of the skin obtained from a 64-year old immuno-compromised male patient

    Reciprocal regulation of the basic helix-loop-helix/Per-Arnt-Sim partner proteins, Arnt and Arnt2, during neuronal differentiation

    Get PDF
    Basic helix–loop–helix/Per–Arnt–Sim (bHLH/PAS) transcription factors function broadly in development, homeostasis and stress response. Active bHLH/PAS heterodimers consist of a ubiquitous signal-regulated subunit (e.g., hypoxia-inducible factors, HIF-1α/2α/3α; the aryl hydrocarbon receptor, AhR) or tissue-restricted subunit (e.g., NPAS1/3/4, Single Minded 1/2), paired with a general partner protein, aryl hydrocarbon receptor nuclear translocator (Arnt or Arnt2). We have investigated regulation of the neuron-enriched Arnt paralogue, Arnt2. We find high Arnt/Arnt2 ratios in P19 embryonic carcinoma cells and ES cells are dramatically reversed to high Arnt2/Arnt on neuronal differentiation. mRNA half-lives of Arnt and Arnt2 remain similar in both parent and neuronal differentiated cells. The GC-rich Arnt2 promoter, while heavily methylated in Arnt only expressing hepatoma cells, is methylation free in P19 and ES cells, where it is bivalent with respect to active H3K4me3 and repressive H3K27me3 histone marks. Typical of a ‘transcription poised’ developmental gene, H3K27me3 repressive marks are removed from Arnt2 during neuronal differentiation. Our data are consistent with a switch to predominant Arnt2 expression in neurons to allow specific functions of neuronal bHLH/PAS factors and/or to avoid neuronal bHLH/PAS factors from interfering with AhR/Arnt signalling.Nan Hao, Veronica L. D. Bhakti, Daniel J. Peet and Murray L. Whitela

    The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Get PDF
    Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the translocation step of BAX activation may be impaired

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR

    Get PDF
    The basic helix–loop–helix (bHLH).PAS dimeric transcription factors have crucial roles in development, stress response, oxygen homeostasis and neurogenesis. Their target gene specificity depends in part on partner protein choices, where dimerization with common partner Aryl hydrocarbon receptor nuclear translocator (Arnt) is an essential step towards forming active, DNA binding complexes. Using a new bacterial two-hybrid system that selects for loss of protein interactions, we have identified 22 amino acids in the N-terminal PAS domain of Arnt that are involved in heterodimerization with aryl hydrocarbon receptor (AhR). Of these, Arnt E163 and Arnt S190 were selective for the AhR/Arnt interaction, since mutations at these positions had little effect on Arnt dimerization with other bHLH.PAS partners, while substitution of Arnt D217 affected the interaction with both AhR and hypoxia inducible factor-1α but not with single minded 1 and 2 or neuronal PAS4. Arnt uses the same face of the N-terminal PAS domain for homo- and heterodimerization and mutational analysis of AhR demonstrated that the equivalent region is used by AhR when dimerizing with Arnt. These interfaces differ from the PAS β-scaffold surfaces used for dimerization between the C-terminal PAS domains of hypoxia inducible factor-2α and Arnt, commonly used for PAS domain interactions

    Mitochondrial Dysfunction Links Ceramide Activated HRK Expression and Cell Death

    Get PDF
    Cell death is an essential process in normal development and homeostasis. In eyes, corneal epithelial injury leads to the death of cells in underlying stroma, an event believed to initiate corneal wound healing. The molecular basis of wound induced corneal stromal cell death is not understood in detail. Studies of others have indicated that ceramide may play significant role in stromal cell death following LASIK surgery. We have undertaken the present study to investigate the mechanism of death induced by C6 ceramide in cultures of human corneal stromal (HCSF) fibroblasts.Cultures of HCSF were established from freshly excised corneas. Cell death was induced in low passage (p<4) cultures of HCSF by treating the cells with C6 ceramide or C6 dihydroceramide as a control. Cell death was assessed by Live/Dead cell staining with calcein AM and ethidium homodimer-1 as well as Annexin V staining, caspase activation and TUNEL staining Mitochondrial dysfunction was assessed by Mito Sox Red, JC-1 and cytochrome C release Gene expression was examined by qPCR and western blotting.Our data demonstrate ceramide caused mitochondrial dysfunction as evident from reduced MTT staining, cyto c release from mitochondria, enhanced generation of ROS, and loss in mitochondrial membrane potential (ΔΨm). Cell death was evident from Live -Dead Cell staining and the inability to reestablish cultures from detached cells. Ceramide induced the expression of the harikari gene(HRK) and up-regulated JNK phosphorylation. In ceramide treated cells HRK was translocated to mitochondria, where it was found to interact with mitochondrial protein p32. The data also demonstrated HRK, p32 and BAD interaction. Ceramide-induced expression of HRK, mitochondrial dysfunction and cell death were reduced by HRK knockdown with HRK siRNA.Our data document that ceramide is capable of inducing death of corneal stromal fibroblasts through the induction of HRK mediated mitochondria dysfunction
    corecore