503 research outputs found

    Structure of quantum correlations in momentum space and off diagonal long range order in eta pairing and BCS states

    Full text link
    The quantum states built with the eta paring mechanism i.e., eta pairing states, were first introduced in the context of high temperature superconductivity where they were recognized as important example of states allowing for off-diagonal long-range order (ODLRO). In this paper we describe the structure of the correlations present in these states when considered in their momentum representation and we explore the relations between the quantum bipartite/multipartite correlations exhibited in k space and the direct lattice superconducting correlations. In particular, we show how the negativity between paired momentum modes is directly related to the ODLRO. Moreover, we investigate the dependence of the block entanglement on the choice of the modes forming the block and on the ODLRO; consequently we determine the multipartite content of the entanglement through the evaluation of the generalized "Meyer Wallach" measure in the direct and reciprocal lattice. The determination of the persistency of entanglement shows how the network of correlations depicted exhibits a self-similar structure which is robust with respect to "local" measurements. Finally, we recognize how a relation between the momentum-space quantum correlations and the ODLRO can be established even in the case of BCS states.Comment: 11 pages, 3 figure

    The elementary excitations of the exactly solvable Russian doll BCS model of superconductivity

    Full text link
    The recently proposed Russian doll BCS model provides a simple example of a many body system whose renormalization group analysis reveals the existence of limit cycles in the running coupling constants of the model. The model was first studied using RG, mean field and numerical methods showing the Russian doll scaling of the spectrum, E(n) ~ E0 exp(-l n}, where l is the RG period. In this paper we use the recently discovered exact solution of this model to study the low energy spectrum. We find that, in addition to the standard quasiparticles, the electrons can bind into Cooper pairs that are different from those forming the condensate and with higher energy. These excited Cooper pairs can be described by a quantum number Q which appears in the Bethe ansatz equation and has a RG interpretation.Comment: 36 pages, 12 figure

    Entanglement as a quantum order parameter

    Get PDF
    We show that the quantum order parameters (QOP) associated with the transitions between a normal conductor and a superconductor in the BCS and eta-pairing models and between a Mott-insulator and a superfluid in the Bose-Hubbard model are directly related to the amount of entanglement existent in the ground state of each system. This gives a physical meaningful interpretation to these QOP, which shows the intrinsically quantum nature of the phase transitions considered.Comment: 5 pages. No figures. Revised version. References adde

    Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis

    Get PDF
    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions

    Non-Markovian dynamics in a spin star system: The failure of thermalization

    Full text link
    In most cases, a small system weakly interacting with a thermal bath will finally reach the thermal state with the temperature of the bath. We show that this intuitive picture is not always true by a spin star model where non-Markov effect predominates in the whole dynamical process. The spin star system consists a central spin homogeneously interacting with an ensemble of identical noninteracting spins. We find that the correlation time of the bath is infinite, which implies that the bath has a perfect memory, and that the dynamical evolution of the central spin must be non- Markovian. A direct consequence is that the final state of the central spin is not the thermal state equilibrium with the bath, but a steady state which depends on its initial state.Comment: 8 page
    corecore