503 research outputs found
Structure of quantum correlations in momentum space and off diagonal long range order in eta pairing and BCS states
The quantum states built with the eta paring mechanism i.e., eta pairing
states, were first introduced in the context of high temperature
superconductivity where they were recognized as important example of states
allowing for off-diagonal long-range order (ODLRO). In this paper we describe
the structure of the correlations present in these states when considered in
their momentum representation and we explore the relations between the quantum
bipartite/multipartite correlations exhibited in k space and the direct lattice
superconducting correlations. In particular, we show how the negativity between
paired momentum modes is directly related to the ODLRO. Moreover, we
investigate the dependence of the block entanglement on the choice of the modes
forming the block and on the ODLRO; consequently we determine the multipartite
content of the entanglement through the evaluation of the generalized "Meyer
Wallach" measure in the direct and reciprocal lattice. The determination of the
persistency of entanglement shows how the network of correlations depicted
exhibits a self-similar structure which is robust with respect to "local"
measurements. Finally, we recognize how a relation between the momentum-space
quantum correlations and the ODLRO can be established even in the case of BCS
states.Comment: 11 pages, 3 figure
Nanobody-based immunomagnetic separation platform for rapid isolation and detection of Salmonella enteritidis in food samples
The elementary excitations of the exactly solvable Russian doll BCS model of superconductivity
The recently proposed Russian doll BCS model provides a simple example of a
many body system whose renormalization group analysis reveals the existence of
limit cycles in the running coupling constants of the model. The model was
first studied using RG, mean field and numerical methods showing the Russian
doll scaling of the spectrum, E(n) ~ E0 exp(-l n}, where l is the RG period. In
this paper we use the recently discovered exact solution of this model to study
the low energy spectrum. We find that, in addition to the standard
quasiparticles, the electrons can bind into Cooper pairs that are different
from those forming the condensate and with higher energy. These excited Cooper
pairs can be described by a quantum number Q which appears in the Bethe ansatz
equation and has a RG interpretation.Comment: 36 pages, 12 figure
Generation and plant production of recombinant fluorescent immunoglobulin G as innovative immunodiagnostic reagents
Incommmensurability and unconventional superconductor to insulator transition in the hubbard model with bond-charge interaction
[120402.EG Titolo (scorretto) da WebOfScience e PHYSICAL REVIEW LETTERS.
Entanglement as a quantum order parameter
We show that the quantum order parameters (QOP) associated with the
transitions between a normal conductor and a superconductor in the BCS and
eta-pairing models and between a Mott-insulator and a superfluid in the
Bose-Hubbard model are directly related to the amount of entanglement existent
in the ground state of each system. This gives a physical meaningful
interpretation to these QOP, which shows the intrinsically quantum nature of
the phase transitions considered.Comment: 5 pages. No figures. Revised version. References adde
Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis
Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions
Negative media portrayals of immigrants increase ingroup favoritism and hostile physiological and emotional reactions
Non-Markovian dynamics in a spin star system: The failure of thermalization
In most cases, a small system weakly interacting with a thermal bath will
finally reach the thermal state with the temperature of the bath. We show that
this intuitive picture is not always true by a spin star model where non-Markov
effect predominates in the whole dynamical process. The spin star system
consists a central spin homogeneously interacting with an ensemble of identical
noninteracting spins. We find that the correlation time of the bath is
infinite, which implies that the bath has a perfect memory, and that the
dynamical evolution of the central spin must be non- Markovian. A direct
consequence is that the final state of the central spin is not the thermal
state equilibrium with the bath, but a steady state which depends on its
initial state.Comment: 8 page
New frontiers for the early diagnosis of cancer: screening miRNAs through the lateral flow assay method
- …
