173 research outputs found

    Nanocarriers for neuromuscular diseases

    Get PDF
    Overview of the results obtained so far in the frame of a research on suitable nanocarriers for treating myotonic dystroph

    Patterns of Amygdala Region Pathology in LATE-NC: Subtypes that Differ with Regard to TDP-43 Histopathology, Genetic Risk Factors, and Comorbid Pathologies

    Get PDF
    Transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) pathology is a hallmark of limbic-predominant agerelated TDP-43 encephalopathy (LATE). The amygdala is afected early in the evolution of LATE neuropathologic change (LATE-NC), and heterogeneity of LATE-NC in amygdala has previously been observed. However, much remains to be learned about how LATE-NC originates and progresses in the brain. To address this, we assessed TDP-43 and other pathologies in the amygdala region of 184 autopsied subjects (median age=85 years), blinded to clinical diagnoses, other neuropathologic diagnoses, and risk genotype information. As previously described, LATE-NC was associated with older age at death, cognitive impairment, and the TMEM106B risk allele. Pathologically, LATE-NC was associated with comorbid hippocampal sclerosis (HS), myelin loss, and vascular disease in white matter (WM). Unbiased hierarchical clustering of TDP-43 inclusion morphologies revealed discernable subtypes of LATE-NC with distinct clinical, genetic, and pathologic associations. The most common patterns were: Pattern 1, with lamina II TDP-43+processes and preinclusion pathology in cortices of the amygdala region, and frequent LATE-NC Stage 3 with HS; Pattern 2, previously described as type-β, with neurofbrillary tangle-like TDP-43 neuronal cytoplasmic inclusions (NCIs), high Alzheimer’s disease neuropathologic change (ADNC), frequent APOE ε4, and usually LATE-NC Stage 2; Pattern 3, with round NCIs and thick neurites in amygdala, younger age at death, and often comorbid Lewy body disease; and Pattern 4 (the most common pattern), with tortuous TDP43 processes in subpial and WM regions, low ADNC, rare HS, and lower dementia probability. TDP-43 pathology with features of patterns 1 and 2 were often comorbid in the same brains. Early and mild TDP-43 pathology was often best described to be localized in the “amygdala region” rather than the amygdala proper. There were also important shared attributes across patterns. For example, all four patterns were associated with the TMEM106B risk allele. Each pattern also demonstrated the potential to progress to higher LATE-NC stages with confuent anatomical and pathological patterns, and to contribute to dementia. Although LATE-NC showed distinct patterns of initiation in amygdala region, there was also apparent shared genetic risk and convergent pathways of clinico-pathological evolution

    Exploiting lipid and polymer nanocarriers to improve the anticancer sonodynamic activity of chlorophyll

    Get PDF
    Sonodynamic therapy is an emerging approach that uses low-intensity ultrasound to activate a sonosensitizer agent triggering its cytotoxicity for selective cancer cell killing. Several molecules have been proposed as sonosensitizer agents, but most of these, as chlorophyll, are strongly hydrophobic with a low selectivity towards cancer tissues. Nanocarriers can help to deliver more efficiently the sonosensitizer agents in the target tumor site, increasing at the same time their sonodynamic effect, since nanosystems act as cavitation nuclei. Herein, we propose the incorporation of unmodified plant-extracted chlorophyll into nanocarriers with different composition and structure (i.e., liposomes, solid lipid nanoparticles and poly(lactic-co-glycolic acid) nanoparticles) to obtain aqueous formulations of this natural pigment. The nanocarriers have been deeply characterized and then incubated with human prostatic cancer cells (PC-3) and spheroids (DU-145) to assess the influence of the different formulations on the chlorophyll sonodynamic effect. The highest sonodynamic cytotoxicity was obtained with chlorophyll loaded into poly(lactic-co-glycolic acid) nanoparticles, showing promising results for future clinical investigations on sonodynamic therapy

    Recurrent NOMO1 gene deletion is a potential clinical marker in early-onset colorectal cancer and is involved in the regulation of cell migration

    Get PDF
    The incidence of early-onset colorectal cancer (EOCRC; age younger than 50 years) has been progressively increasing over the last decades globally, with causes unexplained. A distinct molecular feature of EOCRC is that compared with cases of late-onset colorectal cancer, in EOCRC cases, there is a higher incidence of Nodal Modulator 1 (NOMO1) somatic deletions. However, the mechanisms of NOMO1 in early-onset colorectal carcinogenesis are currently unknown. In this study, we show that in 30% of EOCRCs with heterozygous deletion of NOMO1, there were pathogenic mutations in this gene, suggesting that NOMO1 can be inactivated by deletion or mutation in EOCRC. To study the role of NOMO1 in EOCRC, CRISPR/cas9 technology was employed to generate NOMO1 knockout HCT-116 (EOCRC) and HS-5 (bone marrow) cell lines. NOMO1 loss in these cell lines did not perturb Nodal pathway signaling nor cell proliferation. Expression microarrays, RNA sequencing, and protein expression analysis by LC–IMS/MS showed that NOMO1 inactivation deregulates other signaling pathways independent of the Nodal pathway, such as epithelial–mesenchymal transition and cell migration. Significantly, NOMO1 loss increased the migration capacity of CRC cells. Additionally, a gut-specific conditional NOMO1 KO mouse model revealed no subsequent tumor development in mice. Overall, these findings suggest that NOMO1 could play a secondary role in early-onset colorectal carcinogenesis because its loss increases the migration capacity of CRC cells. Therefore, further study is warranted to explore other signalling pathways deregulated by NOMO1 loss that may play a significant role in the pathogenesis of the disease.This study was supported by the health research program of the Instituto de Salud Carlos III (Spanish Ministry of Economy and Competitiveness, PI20/01569 and PI20/0974), co-funded by FEDER funds, and Mutua Madrileña Foundation (FMM20/001). A.M.-M was supported by a predoctoral research grant from the Dr. Moraza Fundation (FMoraza18/001). P.G.V and N.G.-U were supported by a predoctoral research grant from the Consejería de Educación—Junta de Castilla y León. A.N.H. was supported by the National Institutes of Health K12 HD043483 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development

    One-carbon metabolites, B vitamins and associations with systemic inflammation and angiogenesis biomarkers among colorectal cancer patients:results from the ColoCare Study

    Get PDF
    B-vitamins involved in one-carbon metabolism have been implicated in the development of inflammation- A nd angiogenesis-related chronic diseases, such as colorectal cancer. Yet, the role of one-carbon metabolism in inflammation and angiogenesis among colorectal cancer patients remains unclear.The objective of this study was to investigate associations of components of one-carbon metabolism with inflammation and angiogenesis biomarkers among newly diagnosed colorectal cancer patients (n=238) in the prospective ColoCare Study, Heidelberg.We cross-sectionally analyzed associations between 12 B-vitamins and one-carbon metabolites and 10 inflammation and angiogenesis biomarkers from pre-surgery serum samples using multivariable linear regression models. We further explored associations among novel biomarkers in these pathways with Spearman partial correlation analyses. We hypothesized that pyridoxal-5'-phosphate (PLP) is inversely associated with inflammatory biomarkers.We observed that PLP was inversely associated with CRP (r=-0.33, plinearlinear=0.003), IL-6 (r=-0.39, plinear linear=0.02) and TNFα (r=-0.12, plinear=0.045). Similar findings were observed for 5-methyl-tetrahydrofolate and CRP (r=-0.14), SAA (r=-0.14) and TNFα (r=-0.15) among colorectal cancer patients. Folate catabolite apABG was positively correlated with IL-6 (r= 0.27, plinearlinear<0.0001), indicating higher folate utilization during inflammation.Our data support the hypothesis of inverse associations between PLP and inflammatory biomarkers among colorectal cancer patients. A better understanding of the role and inter-relation of PLP and other one-carbon metabolites with inflammatory processes among colorectal carcinogenesis and prognosis could identify targets for future dietary guidance for colorectal cancer patients.</p

    Optimization of percutaneous biopsy for diagnosis and pretreatment risk assessment of neuroblastoma

    Get PDF
    BackgroundImage- guided percutaneous core needle biopsy (PCNB) is increasingly utilized to diagnose solid tumors. The objective of this study is to determine whether PCNB is adequate for modern biologic characterization of neuroblastoma.ProcedureA multi- institutional retrospective study was performed by the Pediatric Surgical Oncology Research Collaborative on children with neuroblastoma at 12 institutions over a 3- year period. Data collected included demographics, clinical details, biopsy technique, complications, and adequacy of biopsies for cytogenetic markers utilized by the Children’s Oncology Group for risk stratification.ResultsA total of 243 children were identified with a diagnosis of neuroblastoma: 79 (32.5%) tumor excision at diagnosis, 94 (38.7%) open incisional biopsy (IB), and 70 (28.8%) PCNB. Compared to IB, there was no significant difference in ability to accurately obtain a primary diagnosis by PCNB (95.7% vs 98.9%, P = .314) or determine MYCN copy number (92.4% vs 97.8%, P = .111). The yield for loss of heterozygosity and tumor ploidy was lower with PCNB versus IB (56.1% vs 90.9%, P < .05; and 58.0% vs. 88.5%, P < .05). Complications did not differ between groups (2.9 % vs 3.3%, P = 1.000), though the PCNB group had fewer blood transfusions and lower opioid usage. Efficacy of PCNB was improved for loss of heterozygosity when a pediatric pathologist evaluated the fresh specimen for adequacy.ConclusionsPCNB is a less invasive alternative to open biopsy for primary diagnosis and MYCN oncogene status in patients with neuroblastoma. Our data suggest that PCNB could be optimized for complete genetic analysis by standardized protocols and real- time pathology assessment of specimen quality.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154667/1/pbc28153_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154667/2/pbc28153.pd

    Optimization of percutaneous biopsy for diagnosis and pretreatment risk assessment of neuroblastoma

    Get PDF
    Background: Image-guided percutaneous core needle biopsy (PCNB) is increasingly utilized to diagnose solid tumors. The objective of this study is to determine whether PCNB is adequate for modern biologic characterization of neuroblastoma. Procedure: A multi-institutional retrospective study was performed by the Pediatric Surgical Oncology Research Collaborative on children with neuroblastoma at 12 institutions over a 3-year period. Data collected included demographics, clinical details, biopsy technique, complications, and adequacy of biopsies for cytogenetic markers utilized by the Children\u27s Oncology Group for risk stratification. Results: A total of 243 children were identified with a diagnosis of neuroblastoma: 79 (32.5%) tumor excision at diagnosis, 94 (38.7%) open incisional biopsy (IB), and 70 (28.8%) PCNB. Compared to IB, there was no significant difference in ability to accurately obtain a primary diagnosis by PCNB (95.7% vs 98.9%, P =.314) or determine MYCN copy number (92.4% vs 97.8%, P =.111). The yield for loss of heterozygosity and tumor ploidy was lower with PCNB versus IB (56.1% vs 90.9%, P \u3c.05; and 58.0% vs. 88.5%, P \u3c.05). Complications did not differ between groups (2.9 % vs 3.3%, P = 1.000), though the PCNB group had fewer blood transfusions and lower opioid usage. Efficacy of PCNB was improved for loss of heterozygosity when a pediatric pathologist evaluated the fresh specimen for adequacy. Conclusions: PCNB is a less invasive alternative to open biopsy for primary diagnosis and MYCN oncogene status in patients with neuroblastoma. Our data suggest that PCNB could be optimized for complete genetic analysis by standardized protocols and real-time pathology assessment of specimen quality

    Safety and Efficacy of the NVX-CoV2373 Coronavirus Disease 2019 Vaccine at Completion of the Placebo-Controlled Phase of a Randomized Controlled Trial

    Get PDF
    Acknowledgements The study and article were funded by Novavax. We would like to thank all the study participants for their commitment to this study. We also acknowledge the investigators and their study teams for their hard work and dedication. In addition, we would like to thank the National Institute for Health Research, representatives from the Department of Health and Social Care laboratories and NHS Digital and the members of the UK Vaccine Task Force. Editorial support was provided by Kelly Cameron of Ashfield MedComms, an Inizio company Funding This work was funded by Novavax, and the sponsor had primary responsibility for study design, study vaccines, protocol development, study monitoring, data management, and statistical analyses. All authors reviewed and approved the manuscript before submission. LF reports a position as a prior full-time employee, now contractor to Novavax re-imbursed hourly for work performed on this study and in analyses and drafting this report. IC reports providing medical writing support for this work as an employee of NovavaxPeer reviewedPublisher PD
    corecore