5,696 research outputs found

    Mean field limit for Bosons with compact kernels interactions by Wigner measures transportation

    Full text link
    We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the Wigner measures approach. We prove the propagation of these measures along the flow of a nonlinear (Hartree) field equation. This enhances and complements some previous results in the subject.Comment: 27 pages. arXiv admin note: text overlap with arXiv:1111.5918 by other author

    The Monge problem in Wiener Space

    Get PDF
    We address the Monge problem in the abstract Wiener space and we give an existence result provided both marginal measures are absolutely continuous with respect to the infinite dimensional Gaussian measure {\gamma}

    Geodesics in the space of measure-preserving maps and plans

    Full text link
    We study Brenier's variational models for incompressible Euler equations. These models give rise to a relaxation of the Arnold distance in the space of measure-preserving maps and, more generally, measure-preserving plans. We analyze the properties of the relaxed distance, we show a close link between the Lagrangian and the Eulerian model, and we derive necessary and sufficient optimality conditions for minimizers. These conditions take into account a modified Lagrangian induced by the pressure field. Moreover, adapting some ideas of Shnirelman, we show that, even for non-deterministic final conditions, generalized flows can be approximated in energy by flows associated to measure-preserving maps

    On the dynamics of WKB wave functions whose phase are weak KAM solutions of H-J equation

    Full text link
    In the framework of toroidal Pseudodifferential operators on the flat torus Tn:=(R/2πZ)n\Bbb T^n := (\Bbb R / 2\pi \Bbb Z)^n we begin by proving the closure under composition for the class of Weyl operators Opw(b)\mathrm{Op}^w_\hbar(b) with simbols bSm(Tn×Rn)b \in S^m (\mathbb{T}^n \times \mathbb{R}^n). Subsequently, we consider Opw(H)\mathrm{Op}^w_\hbar(H) when H=12η2+V(x)H=\frac{1}{2} |\eta|^2 + V(x) where VC(Tn;R)V \in C^\infty (\Bbb T^n;\Bbb R) and we exhibit the toroidal version of the equation for the Wigner transform of the solution of the Schr\"odinger equation. Moreover, we prove the convergence (in a weak sense) of the Wigner transform of the solution of the Schr\"odinger equation to the solution of the Liouville equation on Tn×Rn\Bbb T^n \times \Bbb R^n written in the measure sense. These results are applied to the study of some WKB type wave functions in the Sobolev space H1(Tn;C)H^{1} (\mathbb{T}^n; \Bbb C) with phase functions in the class of Lipschitz continuous weak KAM solutions (of positive and negative type) of the Hamilton-Jacobi equation 12P+xv±(P,x)2+V(x)=Hˉ(P)\frac{1}{2} |P+ \nabla_x v_\pm (P,x)|^2 + V(x) = \bar{H}(P) for PZnP \in \ell \Bbb Z^n with >0\ell >0, and to the study of the backward and forward time propagation of the related Wigner measures supported on the graph of P+xv±P+ \nabla_x v_\pm

    Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients

    Full text link
    In this paper we give an affirmative answer to an open question mentioned in [Le Bris and Lions, Comm. Partial Differential Equations 33 (2008), 1272--1317], that is, we prove the well-posedness of the Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients.Comment: 11 pages. The proof has been modifie

    Perimeter of sublevel sets in infinite dimensional spaces

    Full text link
    We compare the perimeter measure with the Airault-Malliavin surface measure and we prove that all open convex subsets of abstract Wiener spaces have finite perimeter. By an explicit counter-example, we show that in general this is not true for compact convex domains

    Precise determination of muon and electromagnetic shower contents from shower universality property

    Full text link
    We consider two new aspects of Extensive Air Shower development universality allowing to make accurate estimation of muon and electromagnetic (EM) shower contents in two independent ways. In the first case, to get muon (or EM) signal in water Cherenkov tanks or in scintillator detectors it is enough to know the vertical depth of shower maximum and the total signal in the ground detector. In the second case, the EM signal can be calculated from the primary particle energy and the zenith angle. In both cases the parametrizations of muon and EM signals are almost independent on primary particle nature, energy and zenith angle. Implications of the considered properties for mass composition and hadronic interaction studies are briefly discussed. The present study is performed on 28000 of proton, oxygen and iron showers, generated with CORSIKA 6.735 for E1E^{-1} spectrum in the energy range log(E/eV)=18.5-20.0 and uniformly distributed in cos^2(theta) in zenith angle interval theta=0-65 degrees for QGSJET II/Fluka interaction models.Comment: Submitted to Phys. Rev.

    Damage as Gamma-limit of microfractures in anti-plane linearized elasticity

    Get PDF
    A homogenization result is given for a material having brittle inclusions arranged in a periodic structure. <br/> According to the relation between the softness parameter and the size of the microstructure, three different limit models are deduced via Gamma-convergence. <br/> In particular, damage is obtained as limit of periodically distributed microfractures
    corecore