12,122 research outputs found
The three-body recombination of a condensed Bose gas near a Feshbach resonance
In this paper, we study the three-body recombination rate of a homogeneous
dilute Bose gas with a Feshbach resonance at zero temperature. The ground state
and excitations of this system are obtained. The three-body recombination in
the ground state is due to the break-up of an atom pair in the quantum
depletion and the formation of a molecule by an atom from the broken pair and
an atom from the condensate. The rate of this process is in good agreement with
the experiment on Na in a wide range of magnetic fields.Comment: 10 pages, 2 figures, to be published in Phys. Rev.
Defect turbulence in inclined layer convection
We report experimental results on the defect turbulent state of undulation
chaos in inclined layer convection of a fluid withPrandtl number .
By measuring defect density and undulation wavenumber, we find that the onset
of undulation chaos coincides with the theoretically predicted onset for
stable, stationary undulations. At stronger driving, we observe a competition
between ordered undulations and undulation chaos, suggesting bistability
between a fixed-point attractor and spatiotemporal chaos. In the defect
turbulent regime, we measured the defect creation, annihilation, entering,
leaving, and rates. We show that entering and leaving rates through boundaries
must be considered in order to describe the observed statistics. We derive a
universal probability distribution function which agrees with the experimental
findings.Comment: 4 pages, 5 figure
New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products
In this paper, we study the impact of the inclusion of the recently measured
beta decay properties of the Tc, Mo, and
Nb nuclei in an updated calculation of the antineutrino energy spectra
of the four fissible isotopes U, and Pu. These
actinides are the main contributors to the fission processes in Pressurized
Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo
and Nb isotopes have been found to play a major role in the component
of the decay heat of Pu, solving a large part of the
discrepancy in the 4 to 3000\,s range. They have been measured using the Total
Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations
are performed using the information available nowadays in the nuclear
databases, summing all the contributions of the beta decay branches of the
fission products. Our results provide a new prediction of the antineutrino
energy spectra of U, Pu and in particular of U for
which no measurement has been published yet. We conclude that new TAS
measurements are mandatory to improve the reliability of the predicted spectra.Comment: 10 pages, 2 figure
Correlating densities of centrality and activities in cities : the cases of Bologna (IT) and Barcelona (ES)
This paper examines the relationship between street centrality and densities of commercial and service activities in cities. The aim is to verify whether a correlation exists and whether some 'secondary' activities, i.e. those scarcely specialized oriented to the general public and ordinary daily life, are more linked to street centrality than others. The metropolitan area of Barcelona (Spain) is investigated, and results are compared with those found in a previous work on the city of Bologna (Italy). Street centrality is calibrated in a multiple centrality assessment (MCA) model composed of multiple measures such as closeness, betweenness and straightness. Kernel density estimation (KDE) is used to transform data sets of centrality and activities to one scale unit for correlation analysis between them. Results indicate that retail and service activities in both Bologna and Barcelona tend to concentrate in areas with better centralities, and that secondary activities exhibit a higher correlation
Performances and stability of a 2.4 ton Gd organic liquid scintillator target for antineutrino detection
In this work we report the performances and the chemical and physical
properties of a (2 x 1.2) ton organic liquid scintillator target doped with Gd
up to ~0.1%, and the results of a 2 year long stability survey. In particular
we have monitored the amount of both Gd and primary fluor actually in solution,
the optical and fluorescent properties of the Gd-doped liquid scintillator
(GdLS) and its performances as a neutron detector, namely neutron capture
efficiency and average capture time. The experimental survey is ongoing, the
target being continuously monitored. After two years from the doping time the
performances of the Gd-doped liquid scintillator do not show any hint of
degradation and instability; this conclusion comes both from the laboratory
measurements and from the "in-tank" measurements. This is the largest stable
Gd-doped organic liquid scintillator target ever produced and continuously
operated for a long period
Quasi-probability representations of quantum theory with applications to quantum information science
This article comprises a review of both the quasi-probability representations
of infinite-dimensional quantum theory (including the Wigner function) and the
more recently defined quasi-probability representations of finite-dimensional
quantum theory. We focus on both the characteristics and applications of these
representations with an emphasis toward quantum information theory. We discuss
the recently proposed unification of the set of possible quasi-probability
representations via frame theory and then discuss the practical relevance of
negativity in such representations as a criteria for quantumness.Comment: v3: typos fixed, references adde
Quantum tomography of mesoscopic superpositions of radiation states
We show the feasibility of a tomographic reconstruction of Schr\"{o}dinger
cat states generated according to the scheme proposed by S. Song, C.M. Caves
and B. Yurke [Phys. Rev. A 41, 5261 (1990)]. We present a technique that
tolerates realistic values for quantum efficiency at photodetectors. The
measurement can be achieved by a standard experimental setup.Comment: Submitted to Phys. Rev. Lett.; 4 pages including 6 ps figure
Molecular farming of human tissue transglutaminase in tobacco plants
In this study we have utilized Nicotiana tabacum with a molecular farming purpose in attempt of producing transgenic plants expressing the human tissue transglutaminase (htTG). Three plant expression constructs were used enabling targeting and accumulation of the recombinant protein into the plant cell cytosol (cyto), the chloroplasts (chl) and the apoplastic space (apo). Analysis of transgenic T(0) plants revealed that recombinant htTG was detectable in all three transgenic lines and the accumulation levels were in a range of 18-75 mu g/g of leaf material. In the T(1) generation, the recombinant htTG was still expressed at high level and a significant catalytic activity was detected into the leaf protein extracts. Southern blot analyses revealed that apo and chl plants of T(1) generation possess a high copy number of the recombinant htTG in their genome, while the cyto plants carry a single copy
Lagrangian Statistics and Temporal Intermittency in a Shell Model of Turbulence
We study the statistics of single particle Lagrangian velocity in a shell
model of turbulence. We show that the small scale velocity fluctuations are
intermittent, with scaling exponents connected to the Eulerian structure
function scaling exponents. The observed reduced scaling range is interpreted
as a manifestation of the intermediate dissipative range, as it disappears in a
Gaussian model of turbulence.Comment: 4 pages, 5 figure
- …
