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Abstract: 

This paper examines the relationship between street centrality and densities of 

commercial and service activities in cities. The aim is to verify whether a 

correlation exists and whether some categories of economic activities, namely 

those scarcely specialized activities oriented to the general public and ordinary 

daily life, are more linked to street centrality than others. The metropolitan area of 

Barcelona (Spain) is investigated, and results are compared with those found in a 

previous work on the city of Bologna (Italy). Street centrality is calibrated in a 

multiple centrality assessment (MCA) model composed of multiple measures 

such as closeness, betweenness and straightness. Kernel density estimation 

(KDE) is used to transform data sets of centrality and activities to one scale unit 

for correlation analysis between them. Results indicate that retail and service 

activities in both Bologna and Barcelona tend to concentrate in areas with better 

centralities: in fact the spatial distribution of these activities correlates highly with 

both simple and compound measures of centrality. This confirms the hypothesis 

that street centrality plays a crucial role in shaping the formation of urban 

structure and land uses. Moreover, results suggest that a locational rule seems to 

link to street centrality those economic activities oriented to the general public. 
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1.  Location and Centrality in Cities 

“No matter how good its offering, merchandising, or customer service, every retail 

company still has to contend with three critical elements of success: location, 

location, and location” (Taneja, 1999, p.136). What is location? Why does it 

matter? A simple and intuitive answer is: centrality. 

A central place has one special feature to offer to those who live or work in a city: 

easy accessibility from immediate surroundings as well as from far away. 

Accessibility may be transformed to visibility and popularity. Therefore, a central 

place tends to attract more customers, has a greater potential to develop into an 

urban landmark and a social catalyst, and is more likely to offer a larger diversity 

of goods and services such as museums, theatres or office headquarters. A more 

central location commands a higher real estate value and is occupied by a more 

intensive land use. Central locations in an urban area have the potential to 

sustain higher densities of retails and services, and are a key factor for 

supporting the formation and vitality of urban “nodes” (Newman and Kenworthy, 

1999). Centrality emerges as one of the most powerful determinants for urban 

planners and designers to understand how a city works and to decide where 

renovation and redevelopment need to be placed.  

Centrality does not only affect how a city works today, but also plays an important 

role in shaping its growth. If one looks at where a city centre is located, it is most 

likely to sprout from the intersection of main routes, where some special 

configuration of the terrain or some particular layout of the river system (or water 

bodies in general) makes the place compulsory to pass through. That is one of 

the dominant theories that explain where a city begins. Then, departing from 
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such central locations, the city grows up over time with gradual additions of 

dwellings, residents and activities: first along the main routes, then filling the in-

between areas, and then developing streets that realize loops and points of 

return. As the structure becomes more complex, new central streets and places 

are formed and stimulate growth of residents and activities around them. This 

evolutionary process has been driving the formation of urban fabrics and the 

advancement of human civilization throughout most of the seven millenniums of 

city history.  

Centrality appears to be somehow at the heart of that marvellous hidden order 

that supports the formation of “spontaneous” and organic cities (Jacobs, 1961). It 

is also a crucial issue in the contemporary debate on searching for more bottom-

up and “natural” strategies of urban planning beyond the modernistic heritage. 

Centrality has been studied in many branches of urban research, especially in 

economic geography and regional analysis (Wilson, 2000) and transportation 

planning (Meyer and Miller, 2000; Goulias, 2002). In most cases, centrality has 

been dealt with as a means to measure the relationship between activities among 

places, and the focus is on those relationships rather than on centrality itself. In 

essence, this has led to an interpretation of centrality in an intuitive notion that a 

more central location is a place “closer” to all others. 

In urban planning and design, centrality is the core issue addressed by space 

syntax, a methodology of spatial analysis, even though under notions of 

“visibility” and “integration” (Hillier and Hanson, 1984; Hillier, 1996). Space syntax 

has opened a whole new range of opportunities for urban designers to develop a 

deeper understanding of several structural properties of city spaces. The model 
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has achieved significant successes in the practice of countless urban 

regeneration programmes in the UK and elsewhere, and helped urban planners 

and designers in making good decisions and reframing the debate on pivotal 

issues such as crime, self-surveillance, community building and renovation of 

large housing estates in the last two decades or so. Despite of these successes, 

urban designers often perceive space syntax as a quantitative threat to the 

creativity embedded in the art of city design, while on the other side researchers 

in spatial analysis and geo-computation often find it lacks rigorous expression 

and clear disciplinary references.  

The Multiple Centrality Assessment (MCA) model (Porta et al, 2006a, 2006b; 

Cardillo et al, 2006; Crucitti et al, 2006a, 2006b; Scellato et al, 2006; Scheurer 

and Porta, 2006; Scheurer et al, 2007) follows a broader tradition in centrality 

assessment which draws back to structural sociology since the early 1950s 

(Bavelas, 1948, 1950; Freeman, 1977, 1979; also see an overview by 

Wasserman and Faust, 1994), and more recently in the “new” physics of complex 

networks (Boccaletti et al, 2006). By experimenting this stream of studies and the 

network analysis in a spatial environment, MCA works on the forefront of a 

growing wave of interest for Geographic Information research (Batty, 2005). 

Therefore, the MCA model shares with space syntax the fundamental values that 

refer to the structural interpretation of urban spaces for urban planning and 

design, while offering a new and deeply alternative technical perspective. 

The first hypothesis for this study is that centrality captures the essence of 

location advantage in an urban area, and its value should be reflected in the 

intensity of land uses, in this case, densities of economic activities. The second 
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hypothesis is that certain categories of activities correlate better than others with 

street centrality, and more specifically that “secondary” activities (Jacobs, 1961), 

i.e. those retail commerce, low-skilled service and professional activities related 

to ordinary daily needs and the contact with the general public, are more 

correlated with street centrality than highly skilled, larger or more specialized 

activities: this would provide a bridge between the structural properties of urban 

layouts and the functional, economic and social basis for the evolution of 

compact, liveable urban communities at the scale of the neighbourhood, a major 

issue in the current debate of sustainable urban planning and design.  

After a previous investigation of the first more general hypothesis recently worked 

out for Bologna, the capital city of the Emilia-Romagna region in northern Italy, 

(Porta et al, 2007) we are hereby deepening a similar approach for the case of 

Barcelona, the capital city of the Catalunya region, Spain: in the present study, 

however, the availability of a massive database of the location of all economic 

activities in year 2002 allows a much more detailed analysis of activities and 

makes it possible to pose and verify the second hypothesis.  

The remainder of this paper is organized as follows. Section 2 describes the 

methodological foundations of the case studies with reference to centrality 

measuring and mapping and to the problem of correlating centrality with the 

location of activities. Section 3 presents the case studies: the Bologna case, 

already presented in a previous work, is briefly summarized, while on the other 

hand the Barcelona case is illustrated in detail. Section 4 presents the results of 

the study with reference to the two hypothesises mentioned above and a 

conclusion on the reliability of the methodology adopted for centrality assessment 
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in spatial environments. The paper is concluded in section 5 with a brief 

summary. 

 

2. Multiple Centrality Assessment (MCA) and Kernel Density Correlation 

(KDC): a methodological outline 

The scope of this study is to shed some light on the possible correlation between 

the centrality of streets and the location of economic activities in an urban 

environment. In both the Bologna and Barcelona cases, economic activities were 

provided in geo-referenced and qualified ArcGIS layers. As for the quantification 

of street centrality we take advantage of the MCA model, while in order to 

spatially correlate street centrality with activities’ location we firstly calculate the 

density of both street centrality and activities and then correlate such densities: 

basic information on these two procedures are therefore illustrated in the 

following in this section. 

 

2.1  Multiple Centrality Assessment (MCA) 

Multiple Centrality Assessment is a complex of GIS-based computer-operated 

procedures aimed at quantifying and mapping, both locally and globally, the 

centrality of urban streets according to a set of different centrality indices. As 

quoted above in section 1, MCA has already been presented in a number of 

recent studies to which we forward the reader for any further inquiry. In this 

section, however, we shortly illustrate the basic notions in order to easy the 

understanding of the present research report. 
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In an urban fabric, streets (links or edges) are represented in a GIS system as 

linear features with two end nodes and, possibly, one or more intermediate 

vertices. The MCA model assigns a set of centrality values to each street 

segment (Porta et al, 2006a,b; Crucitti et al, 2006a,b). Here we briefly present the 

three of them applied in this research: closeness (CC), betweenness (CB) and 

straightness (CS). 

Closeness centrality CC measures to what extent a node is close to all the other 

nodes along the shortest paths of the network. CC for a node i is defined as: 
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where N is the total number of nodes in the network, and dij is the shortest 

distance between nodes i and j. In other words, the closeness centrality for a 

node is the inverse of average distance from this node to all other nodes.  

After calibrating the shortest path between any two nodes, it is straightforward to 

compute CC for all the nodes in the network. CC may be interpreted as proximity, 

and also captures the notion of accessibility of a place. The closer a place is to 

other places, the more accessible it is. The family of closeness measures has 

been widely used in urban and regional analysis. In essence, it reflects the cost 

of overcoming spatial separations between places with population and activities.  

Betweenness centrality CB is based on the idea that a node is more central when 

it is traversed by a larger number of the shortest paths connecting all couples of 

nodes in the network. CB is defined as: 
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where njk is the number of shortest paths between nodes j and k, and njk(i) is the 

number of these shortest paths that contain node i.  

Using an analogue in a social network, CB is like the kind of prominence of a 

person who acts as intermediary among a large number of other persons. In 

MCA, CB captures a special property for a place in a city: it does not act as an 

origin or a destination for trips, but as a pass-through point. CB represents a 

node’s volume of through traffic. A place with better betweenness may benefit 

from this important property. 

Straightness centrality CS originates from the idea that efficiency of 

communication between two nodes increases when there is less deviation of 

their shortest path from the virtual straight line connecting them, i.e., more 

“straightness” of the shortest path. CS is defined as: 
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where 
Eucl

ijd  is the Euclidean distance between nodes i and j, or the distance with 

the virtual straight connection. CS was originally proposed in non-spatial networks 

as a normalization procedure (Vragovìc et al, 2005). In spatial networks, CS 

reveals a totally different meaning related to human cognitive processes in 

navigating complex spatial structures. CS measures the extent to which a place 

can be reached directly, like on a straight line, from all other places in a city. It is 
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a quality that makes it prominent in terms of “legibility” and “presence” (Conroy-

Dalton, 2003). 

In this study, first, all three global centrality indices were calculated as all nodes 

and edges in the network participated in the computation: namely global 

closeness CC
glob, global betweenness CB

glob, and global straightness CS
glob. As an 

example, Figure 1c shows the variation of global betweenness CB
glob across the 

street network in Barcelona. In addition, one local closeness centrality index was 

calculated for the nodes located within a distance d=1.600mt from each node I, 

denoted with CC
1600. As shown in a previous study (Porta et al, 2006b), local 

measures are useful to overcome the edge effect, i.e., the distortion that lowers 

the centrality values near the edge of a network. Such a distortion turned out to 

be very significant for the closeness index when calculated on highly fragmented 

networks. Moreover, global centrality measures do not reveal network properties 

on a local scale whereas local measures portray relationships determined by 

spatially limited “catchment” areas like the neighbourhood or the district. In 

Bologna, two different centrality indices, closeness and straightness, were 

calculated locally: differently than in Barcelona, the search range was set as 

d=800mt, therefore local closeness and local straightness were denoted as CC
800 

and CS
800 respectively.  

We have developed an ArcGIS extension to prepare the street network data for 

MCA computation. The module first cleans up the street network in an ArcGIS 

shapefile format for most common errors, then generates nodes at intersections 

and links the nodes’ IDs to the polyline attribute table, and finally generates a 

“connectivity table” that stores for each street its length, the IDs of the two end 
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nodes and their x,y coordinates. The connectivity table is then processed by a 

C++ script that computes the centralities of all nodes: the centrality of each street 

is equalled to the average centrality of the street’s two nodes. The results from 

the C++ program are fed back to ArcGIS for mapping and other spatial analysis 

such as, in the next phase, the Kernel Density Correlation (KDE).  

 

2.2  Kernel Density Correlation (KDC) 

As illustrated above in section 2.1, by means of the MCA model three centralities 

(CB, CC and CS) for each of the nodes of the cases’ street networks are 

computed, based on which centralities for each edge are calculated as the 

average of its two end nodes; on the other side, we have a certain number of 

activities in the cases’ study areas. All nodes, edges and economic activities are 

consistently geo-referenced but of course the street network and points of 

economic activities remain distinct spatial features. In order to analyze the 

relationship between them, our first task was to transform the two data sets to 

one scale (analysis unit) so that such a comparison may be made. The 

methodology that we used, presented in Porta et al. (2007), is named Kernel 

Density Correlation (KDC) and is summarized in this section. 

We transform both the data sets in a new framework (e.g., a raster system), and 

examine the relationship between the density of street centralities and the density 

of activities at the same scale. We therefore may realize a data transformation 

from one scale or analysis unit to another by means of spatial smoothing and/or 

spatial interpolation techniques; among the many possible choices of spatial 

smoothing (e.g., floating catchment area, Kernel density estimates, and empirical 
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Bayes estimation) and spatial interpolation methods (e.g., trend surface analysis, 

inverse distance weighted, thin-plate splines, and kriging) (Wang, 2006, pp.35-

53), in the present research the Kernel Density Estimation (KDE) method is 

applied. Basically, the KDE uses the density within a range (window) of each 

observation to represent the value at the centre of the window. Within the 

window, the KDE weighs nearby objects more than far ones based on a kernel 

function (Silverman, 1986; Bailey and Gatrell, 1995; Fotheringham et al, 2000, 

pp.146-149). By doing so, the KDE generates a density of the events (discrete 

points) as a continuous field (e.g., raster), and therefore converts the two data 

sets to the same raster framework and permits the analysis of relationship 

between them.  

Our choice of KDE was made for at least three reasons.  

• First and most importantly, by using the density (or average attributes) of 

nearby objects to represent the property at the middle location, the KDE 

captures an essential property of spatial phenomena, that it is not the 

place itself but rather its surroundings that make it special and explains its 

setting. Therefore using the KDE here – as opposed to more traditional 

arc-by-arc “direct” correlation approaches like those between street 

“integration” and socioeconomic and environmental indicators addressed 

by Penn and Turner (2003) – is not only a need for converting the data 

scale but also a necessity of accurately capturing the true experiential 

notion of the degrading and overlapping effects of different events 

differently located in space.  
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• Secondly, the KDE uses a kernel function to value the contribution of a 

nearby object to the density estimate more than a remote one, as stated in 

Tobler’s (1970) first law of geography, i.e., “everything is related to 

everything else, but near things are more related than distant things.” This 

property of distance decay for spatial interaction is widely recognized by 

urban researchers. The family of gravity models follow the same notion 

with strong theoretical foundations and have many successful applications 

in urban and regional studies (Fotheringham et al, 2000, pp.213-235).  

• Finally, the KDE is a standard tool in ArcGIS spatial analyst module, and 

the results can be easily integrated in ArcGIS for mapping.      

 

A kernel function looks like a bump centred at each point xi and tapering off to 

0 over a bandwidth or window. The kernel density at point x at the centre of a grid 

cell is estimated to be the sum of bumps within the bandwidth: 
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where K( ) is the kernel function, h is the bandwidth, n is the number of points 

within the bandwidth, and n is the total number of events. All events xi within the 

bandwidth of x generate some bumps reaching the point x, and contribute to the 

estimated kernel density there.  

The kernel function K(y) is a function satisfying the normalization for a two-

dimensional vector y such as: 
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A regularly adopted kernel is the standard normal curve:  

1 2 21
( ) (2 ) exp( )
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For convenience, our computation in ArcGIS used the following kernel function, 

as described in Silverman (1986, p.76):   

1 2 2 2( ) (3 ) (1 )          if    y 1K y y! "
= " <                              

( ) 0                               otherwiseK y =                 (5)     

One advantage of equation (5) is its faster calculation than the regular kernel. As 

the formula indicates, any activity beyond the bandwidth h from the centroid of 

the considered cell does not contribute to the summation. 

As discussed above, activities are represented as points in a GIS system. ArcGIS 

has a built-in tool for kernel estimation. To access the tool in ArcGIS, click the 

Spatial Analyst dropdown arrow > Density > choose Kernel for Density Type in 

the dialog. Applying the tool to the data set of economic activities yielded the 

kernel densities. For computing the kernel densities of street network, we used 

centrality values for each street segment (edge) to weigh the contribution of each 

edge on the kernel “bump” at a grid cell. In other words, a kernel function is 

applied to each street so that its value is greatest on the line, diminishes with 

distance from the line, and reaches 0 at the distance h from the line. Differently 

from the densities of activities that are not weighted, the kernel density of street 

centrality at each grid cell in region R is the sum of all the kernel surfaces within 

the bandwidth times the value of centrality in each surface. In ArcGIS, this is 

implemented by selecting one of the centrality indices as the “population” 
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(weight) field. By doing so, we are not computing just the density of streets, but 

the density of street centrality: in other words, we are weighting streets by their 

centrality. 

One problem in using the KDE is the choices of particular kernel function and 

bandwidth h. Several methods have been proposed to pick up the best kernel 

function (Fotheringham et al, 2000: 155-157) or optimize h (Cao et al, 1994) 

according to the global structure of the dataset. However, while Epanechnikov 

(1969) finds that the choice among the various kernel functions does not affect 

significantly the outcomes of the process, Williamson et al (1998) and Levine 

(2004) point out that the choice of bandwidth is an important issue in any KDE 

applications. Recent advancements in Geographically Weighed Regression 

(GWR) research suggested using an adaptive, rather than fixed, bandwidth h: 

that is to say, h is larger in areas where events are sparser and smaller where 

they are denser (Fotheringham et al, 2002).  

As explained earlier, the KDE is not the methodological focus of this research, 

and is used here to transform the two data features to the same analysis unit. In 

the Bologna study we did experiment with different fixed h values to show the 

robustness of the results while in the Barcelona study we just used a fixed 

h=300mt. The choice of a fixed rather than adaptive bandwidth pertains to the 

purpose of the study: we are interested in understanding the relationship 

between the street network and basic services in an ordinary city. In Bologna, 

where we just had two distinct categories of activity, we chose h=300, 200 and 

100 meters, which are widely used in urban planning and design to model the 

pedestrian catchment area at the scale of neighbourhood, block and street, 
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respectively (Frey, 1999; Urban Task Force, 1999; Calthorpe and Fulton, 2001; 

Cervero, 1998, 2004); in Barcelona, where we dealt with 24 different categories 

of activity, we took into consideration just one bandwidth h=300 mt (the 

neighbourhood scale). A more detailed information on the cases of Bologna and 

Barcelona is provided in the next section. 

Once the kernel densities of all street centrality indices and all activity categories 

are calculated for each cell in the study region, a “correlation table” is created by 

listing in record for every cell all density values taken from the correspondent 

cells of the density raster layers (Figure 2). The linear correlation is then 

calculated in every cell between each of the street centrality densities and each 

of the economic activity densities in terms of the Pearson index: the Pearson 

index R, ranging from -1 to 1, determines the extent to which values of the two 

correlated variables are "proportional" to each other. In general, the value of 

Pearson R decreases as the sample size increases due to statistical fluctuations 

(Taylor, 1982).   

 

3.  Study Areas and Data Preparations: a cases’ outline  

The study of the Bologna case was presented in Porta et al. (2007), while the 

work on Barcelona is an entirely new study presented here for the first time. In 

Bologna, a some 400.000 inhabitants urban centre in northern Italy, we were 

given an information on economic activities limited to ground floor locations 

qualified as either shops or services (summing up to 9.676 points); that was 

enough, since the focus of our study was mostly on methodological issues. In 

Barcelona, the 1,7 millions inhabitants major urban centre in northern Spain, 
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thanks to the Agencia de Ecologia Urbana we could access a massive database 

of 166.311 activities that included all economic activities of all kinds located at all 

floors and qualified in hundreds of hierarchical categories and sub categories. 

This data set was re-organized in a simpler set of 7 general categories and 

another set of 17 sub-categories selected for their prominent significance in the 

context of our study (Tab.1), which sums up to 24 categories of activity: for 

example we split the general category of retail commerce in the two 

subcategories of those retail activities that are – or are not – related with motor 

vehicles, because one hypothesis is that street centrality is more correlated with 

pedestrian than with motorized movement. 

The street network in Barcelona (6.453 nodes and 11.222 edges) was 

significantly larger than that of Bologna (5.448 nodes and 7.191 edges). As for 

the Kernel density parameters, we set up the two cases differently: in Bologna we 

defined a rectangular the study region, with a cell size of 10mt of edge, while in 

Barcelona we tailored a polygonal boundary following the outer metropolitan ring 

roads, with a cell size of 10 mt of edge. This resulted in a raster database much 

larger in Bologna (2.771.956 cells) than in Barcelona (1.571.093). However, the 

rectangular shape of the Bologna study region left a larger amount of N00 cells 

(i.e. cells with both densities of activities and density of street centrality equal to 

0), which included up to the 66% of the data set, while the same share in 

Barcelona remained around the 54%. The number of raster cells that take values 

of density >0 for the two variables (street centrality and activities) obviously 

depends on the number, location and shape of streets and on the number and 

location of economic activities: because in Bologna we dealt with just two 
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categories of activities (shops and shops+services), and both of them presented 

a similar spatial distribution and territorial coverage, in that case we included in 

the calculation of correlations all the NXX (both densities of activities and 

centrality >0), NX0 (density of activities>0 and density of centrality=0) and N0X 

(density of activities=0 and density of centrality>0) cells. In Barcelona, however, 

we investigated in much deeper detail the correlation of many categories and 

sub-categories of activities: as expected, that led to a larger variation of the 

overall number of NXX cells, that spans from 688.482 cells (in the correlation 

between density of street centrality and density of “IT, services to business and 

people, research & development activities” – activity code #3, with 44.253 such 

activities present in the data set) to 219.970 cells (in the correlation between 

density of street centrality and density of “Public Administration activities” – 

activity code #73, with just 202 such activities present in the data set), while the 

sum of all NXX+N0X+NX0 cells does not vary a lot around the 717.000-719.000 

cells in all correlations. Thus in Barcelona, differently than in Bologna, we chose 

to run the correlation analysis just on NXX cells, i.e. cells where both densities of 

activities and centrality resulted >0: naturally, because of the exclusion of all N0X 

and NX0 cells, which are cells located on the axis of the linear correlation chart, 

this more realistic procedure results in Pearson values significantly lower. 

Notwithstanding this “NXX effect”, however, street centrality and economic 

activities in Barcelona, like we found in Bologna, consistently exhibit a very 

significant positive correlation, as we will see in the next section. 

Finally, while in Bologna we calculated just four “simple” indices of street 

centrality, namely Global Betweenness (CB
glob), Global Closeness (CC

glob), Global 
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Straightness (CS
glob) and Local Closeness (CC

800, with d=800mt), in Barcelona we 

calculated more centrality indices (Tab.2): in fact, we added to the same set of 

“simple” indices used in Bologna (with the difference that Local Closeness in 

Barcelona is calculated with distance d=1.600mt rather than 800mt) the 

computation of four “composite” indices: Global Betweenness + Global 

Closeness + Global Straightness (CB
glob

+C
glob

+S
glob); Global Betweenness + Global 

Straightness (CB
glob

+S
glob); Global Betweenness + Global Closeness (CB

glob
+C

glob); 

Global Betweenness + Local Closeness (CB
glob

+C
1600).  

The procedure for the creation of such composite centrality indices was drawn 

from that proposed in Thurstain-Goodwin and Unwin (2000) for the calculation of 

“town centredness”: firstly each data set was normalized so that values in every 

cell were included in the range 0-1, then a new data set was generated where 

each cell was attributed the sum of the values of the corresponding cells in the 

normalized data sets. 

 

4.  Results 

The results of the Bologna study (Porta et al, 2007) showed a strong positive 

correlation between the density of economic activities and that of street centrality, 

the meaning of “economic activity” being limited in that case to that of “ground-

floor retail shops and services”. More in detail, the study showed that at the 

scales of the neighbourhood and the block (bandwidth h=300 and h=200mt 

respectively) the location of shops alone and that of shops and services reached 

a strong correlation with CB
glob (R values slightly higher and lower of 0,7 

respectively); moreover, the same activity variables were found to correlate very 
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well, especially at the scale of the neighbourhood, also with CC
glob street 

centrality, though at a lower level (R=0,64 and 0,61). These results were 

interpreted as an initial support to the general idea that street centrality acts as a 

powerful determinant factor to the “intensity” (spatial density) of land uses in 

cities.  

The first aim of the present study on Barcelona was to confirm the same idea, 

reformulated as the first hypothesis above in section 1. The second aim of this 

study was to make a step forward, trying to understand which categories of 

economic activities are more correlated to street centrality, with the underlining 

idea (the second hypothesis illustrated in section 1) that street centrality is 

especially important for the support of ordinary, everyday activities that are 

oriented to the general public and interact with the daily life of the neighbourhood. 

As for the first hypothesis, results of the Barcelona study clearly confirm that 

economic activities and street centrality are highly and positively correlated in the 

urban space. In fact, the 192 R values resulting from the correlation of each of 

the 24 activity categories (Tab.1) with each of the 8 street centrality indices 

(Tab.2) give an average of 0,46 in a range that spans from 0,71 to -0,04. It 

should be noted that:  

- 190 out of the 192 R values are >0; 

- considering just the 7 general categories, the average of the 56 R values 

obtained by correlating them with the 8 centrality indices is =0,55 spanning 

from 0,71 (density of Global Closeness with density of “Retail activities” – 

activity code #1) to 0,32 (density of Local Closeness with density of “Gross 

commerce”, activity code #4); 
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- the “Retail commerce” general category alone (activity code #1) gives an 

average R value equal to 0,64 and the “Hotel, b & b, hostel, restaurant, 

pub, café” general category (activity code #2) one equal to 0,59 (Tab.3); 

- 92 of the 192 R values (47,9%) are higher than 0,50;  

- the first 19 positions in ranking give an average R value of 0,66 (Tab.4); 

- the magnitude of the data sets used for correlations (the average number 

of cells included in the calculation in the 24 cases equals some 568.000 

NXX cells), makes the results above statistically more significant . 

As for the second hypothesis, results neatly support the idea that street centrality 

is especially a determinant for the location of those kinds of economic activities 

that are strictly related to the general public and the everyday life of urban 

communities. Considering just the 7 general categories, in fact, their average 

correlation with the 8 street centrality indices (Tab.3) gives a ranking where the 

higher two positions are held by “Retail commerce” and “Hotel, café, bar, 

restaurants”, while the lower two are held by “Other activities not related to 

public” and by “Gross commerce”. It should be noted that the third position in the 

same ranking is held by “IT, services to business and people, research & 

development”, but within this category there are large differences among sub-

categories: “Other services to people” (activity code #93) and “Other service 

activities” (activity code #74) exhibit a high correlation with street centrality (R 

values respectively equal to 0,60 and 0,51) while on the other side “Activities 

related to financial intermediation” (activity code #67) and “Insurance” (activity 

code #66) take much lower R values (respectively equal to 0,34 and 0,31).  
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The locational rule that links this kind of “ordinary” (or “local”, “basic” or 

“community”) retail commerce and service activities with street centrality, 

therefore, emerges everywhere at the level of general categories as well as at 

that of sub-categories, while more skilled, specialized activities, or those more 

linked to motor vehicular traffic, appear to obey different locational rules. 

 

5.  Conclusions 

In this research two hypothesises are investigated about the correlations that 

may occur in cities between the location of economic activities and the centrality 

of streets: firstly – and simply – that such a correlation does exist; secondly that 

some activities are more linked to street centrality than others, and more 

specifically that those activities or services oriented to the general public and 

everyday life are more correlated with street centrality than highly specialized 

ones. In order to verify those hypothesises we rely on a previously defined model 

of street centrality mapping named Multiple Centrality Assessment (MCA) and to 

a methodology of correlation with economic activities named Kernel Density 

Correlation (KDC) based on spatial kernel density. Findings of a previous study 

on the city of Bologna (Italy), which suggested that a strong correlation exists 

between street centrality and ground floor retail shops and services, is hereby 

confirmed for the city of Barcelona (Spain) after all economic activities at all floors 

have been included in the computation. The study of Barcelona also fully 

supports the idea that economic activities oriented to the general public like retail 

commerce, services to the person, or restaurants and cafes, are more linked to 
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street centrality than highly specialized activities like financial intermediation, 

Public Administration, Health services or gross commerce. 

These findings shed some light on a crucial issue in current international debate 

on sustainable urban design and “place-making”, like the need to approach (neo) 

traditional, compact urban developments by aggregating community retail and 

services along central “main” streets. Moreover, results support the predictive 

capacity of the MCA model: by virtue of this capacity, the MCA model can be an 

effective tool in the hands of urban designers and planners for the support of 

evidence-based, scientifically-grounded projects alternatives definition and cross-

evaluations. 
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Table 1.  The 7 general categories and 17 sub-categories of economic 
activities in Barcelona 
 
 

 

0 -- Other activities (not related to public) 29.661

1 -- Retail commerce 39.685

2 -- Hotel, b & b, hostel, restaurant, pub, cafe 12.758

3 -- IT, services to business and people, res. & dev. 44.253

4 -- Gross commerce 12.723

5 -- P.A., services of education, health and social assistance 12.348

6 -- Associational, recreational and sport activities 14.883

166.311

1 50 Sell, fix and maintenance motor vehicles and fuel 3.375

1 52 Retail exept motor vehicles, fix domestic and personal devices 36.310

3 63 Activities related to transport and travel 2.961

3 65 Financial intermediation, exept insurance 4.598

3 66 Insurance 657

3 67 Activities related to financial intermediation 563

3 70 Real estate 10.343

3 71 Rental of machines, domestic and personal devices 1.110

3 72 IT activities 138

3 73 Research & Development 202

3 74 Other service activities 17.189

5 75 Public Administration 2.966

5 80 Education 4.655

5 85 Health and social assistance 4.727

6 91 Associational activities 5.721

6 92 Recreational, cultural and sport activities 9.162

3 93 Other services to people 6.492

Description

Number

of points

Activity code

TOT

S
U

B

C
A
T
E
G

O
R
I
E
S

General

Category

Sub

Category

G
E
N

E
R
A
L
 

C
A
T
E
G

O
R
I
E
S
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Notation Index 

  

CB
glob Global Betweenness 

CC
glob Global Closeness 

CS
glob Global Straightness 

CC
1600 Local Closeness (with d=1600mt) 

 
 

 

CB
glob

+C
glob

+S
glob Global Betweenness + Global Closeness + Global Straightness 

CB
glob

+S
glob Global Betweenness + Global Straightness 

CB
glob

+C
glob Global Betweenness + Global Closeness  

CB
glob

+C
1600 Global Betweenness + Local Closeness (d=1600mt) 

 
Table 2.  The 8 (4 simple + 4 composite) street centrality indices 
applied in Barcelona 
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Table 3. Ranking of the average linear correlation R values of the 7 
general categories of activities with the 8 street centrality indices in 
Barcelona 

Activity 

Code
Description

1 Retail commerce 0,64

2 Hotel, b & b, hostel, restaurant, pub, cafe 0,59

3 IT, services to business and people, res. & dev. 0,56

6 Associational, recreational and sport activities 0,54

5 P.A., services of education, health and social assistance 0,54

0 Other activities (not related to public) 0,49

4 Gross commerce 0,48

0,55

General category
R

value

All general categories
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# Activity 

Code 
Street 

Centrality 
R values 
(NXX) 

    

001 1 CC
glob 0,708921880802 

002 52 CC
glob 0,691016758153 

003 1 CB
glob

+C
glob 0,690688659337 

004 1 CB
glob

+C
glob

+S
glob 0,686441720771 

005 93 CC
glob 0,681533526861 

006 2 CC
glob 0,679716274528 

007 52 CB
glob

+C
glob 0,669134066075 

008 52 CB
glob

+C
glob

+S
glob 0,666435030252 

009 93 CB
glob

+C
glob 0,662352555346 

010 3 CB
glob

+C
glob 0,653871937003 

011 3 CB
glob

+C
1600 0,653871937003 

012 1 CB
glob

+C
1600 0,653532387403 

013 1 CB
glob

+S
glob 0,652947810657 

014 93 CB
glob

+C
glob

+S
glob 0,651048641408 

015 2 CB
glob

+C
glob 0,641807348490 

016 2 CB
glob

+C
glob

+S
glob 0,636900541818 

017 52 CB
glob

+C
1600 0,634610400470 

018 52 CB
glob

+S
glob 0,631088449986 

019 74 CB
glob

+C
glob 0,622211307155 

 
  
Table 4. The KDC results in Barcelona: first 19 positions in ranking 
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Figure 1. [to possibly be printed in colour] Density of activity and 
street centrality: a) location of retail commerce activities (red dots); 
(b) Density (KDE, h=300m) of retail commerce activities; (c) Global 
Betweenness (CB

glob) street centrality (blue for lower values and red 
for higher; (d) Density (KDE, h=300m) of CB

glob street centrality. 
 
[TO BE SUBSTITUTED BY ONE ANALOGOUS IMAGE OF BARCELONA – 
THIS IS OF BOLOGNA] 

 



 30 

 
 
Figure 2.  The construction of the “correlation table”: 
illustration of a grid cell with attributes in various raster layers 
 
 
 


