7,432 research outputs found

    Mathematical analysis and simulations of the neural circuit for locomotion in lamprey

    Get PDF
    We analyze the dynamics of the neural circuit of the lamprey central pattern generator. This analysis provides insight into how neural interactions form oscillators and enable spontaneous oscillations in a network of damped oscillators, which were not apparent in previous simulations or abstract phase oscillator models. We also show how the different behavior regimes (characterized by phase and amplitude relationships between oscillators) of forward or backward swimming, and turning, can be controlled using the neural connection strengths and external inputs

    Lie monads and dualities

    Full text link
    We study dualities between Lie algebras and Lie coalgebras, and their respective (co)representations. To allow a study of dualities in an infinite-dimensional setting, we introduce the notions of Lie monads and Lie comonads, as special cases of YB-Lie algebras and YB-Lie coalgebras in additive monoidal categories. We show that (strong) dualities between Lie algebras and Lie coalgebras are closely related to (iso)morphisms between associated Lie monads and Lie comonads. In the case of a duality between two Hopf algebras -in the sense of Takeuchi- we recover a duality between a Lie algebra and a Lie coalgebra -in the sense defined in this note- by computing the primitive and the indecomposables elements, respectively.Comment: 27 pages, v2: some examples added and minor change

    Performance of the sleep-mode mechanism of the new IEEE 802.16m proposal for correlated downlink traffic

    Get PDF
    There is a considerable interest nowadays in making wireless telecommunication more energy-efficient. The sleep-mode mechanism in WiMAX (IEEE 802.16e) is one of such energy saving measures. Recently, Samsung proposed some modifications on the sleep-mode mechanism, scheduled to appear in the forthcoming IEEE 802.16m standard, aimed at minimizing the signaling overhead. In this work, we present a performance analysis of this proposal and clarify the differences with the standard mechanism included in IEEE 802.16e. We also propose some special algorithms aimed at reducing the computational complexity of the analysis

    Carbon nanotube chirality determines properties of encapsulated linear carbon chain

    Full text link
    Long linear carbon chains encapsulated inside carbon nanotubes are a very close realization of carbyne, the truly one-dimensional allotrope of carbon. Here we study individual pairs of double-walled carbon nanotubes and encapsulated linear carbon chains by tip-enhanced Raman scattering. We observe that the radial breathing mode of the inner nanotube correlates with the frequency of the carbon chain's Raman mode, revealing that the nanotube chirality determines the vibronic and electronic properties of the encapsulated carbon chain. We provide the missing link that connects the properties of the encapsulated long linear carbon chain with the structure of the host nanotube.Comment: keywords: linear carbon chains; carbyne; carbon nanotubes; tip-enhanced Raman scattering; TERS; Significant changes compared to first version of the manuscript. Current version includes Supporting Informatio

    Spatial clustering method for geographic data

    Get PDF
    In the process of visualizing quantitative spatial data, it is necessary to classify attribute values into some class divisions. In a previous paper, the author proposed a classification method for minimizing the loss of information contained in original data. This method can be considered as a kind of smoothing method that neglects the characteristics of spatial distribution. In order to understand the spatial structure of data, it is also necessary to construct another smoothing method considering the characteristics of the distribution of the spatial data. In this paper, a spatial clustering method based on Akaike’s Information Criterion is proposed. Furthermore, numerical examples of its application are shown using actual spatial data for the Tokyo Metropolitan area

    Computational Complexity of the Interleaving Distance

    Full text link
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete.Comment: Discussion related to the characteristic of the field added. Paper accepted to the 34th International Symposium on Computational Geometr
    • …
    corecore