32 research outputs found

    Sum rule for the backward spin polarizability of the nucleon from a backward dispersion relation

    Get PDF
    A new sum rule for γπ\gamma_\pi, the backward spin polarizability of the nucleon, is derived from a backward-angle dispersion relation. Taking into account single- and multi-pion photoproduction in the s-channel up to the energy 1.5 GeV and resonances in the t-channel with mass below 1.5 GeV, it is found for the proton and neutron that [γπ]p[\gamma_\pi]_p = -39.5 +/- 2.4 and [γπ]n[\gamma_\pi]_n = 52.5 +/- 2.4, respectively, in units of 10^{-4} fm^4.Comment: 10 pages, 1 figure, revtex. Submitted to Phys. Lett.

    Resonance states below pion-nucleon threshold and their consequences for nuclear systems

    Get PDF
    Regular sequences of narrow peaks have been observed in the missing mass spectra in the reactions pp --> p pi^+ X and pd --> ppX_1 below pion-production threshold. They are interpreted in the literature as manifestations of supernarrow light dibaryons, or nucleon resonances, or light pions forming resonance states with the nucleon in its ground state. We discuss how existence of such exotic states would affect properties of nuclear systems. We show that the neutron star structure is drastically changed in all three cases. We find that in the presence of dibaryons or nucleon resonances the maximal possible mass of a neutron star would be smaller than the observational limit. Presence of light pions does not contradict the observed neutron star masses. Light pions allow for the existence of extended nuclear objects of arbitrary size, bound by strong and electromagnetic forces.Comment: preprint ECT*-02-18, 6 pages, 3 figure

    Observation of the Higgs Boson of strong interaction via Compton scattering by the nucleon

    Get PDF
    It is shown that the Quark-Level Linear σ\sigma Model (QLLσ\sigmaM) leads to a prediction for the diamagnetic term of the polarizabilities of the nucleon which is in excellent agreement with the experimental data. The bare mass of the σ\sigma meson is predicted to be mσ=666m_\sigma=666 MeV and the two-photon width Γ(σγγ)=(2.6±0.3)\Gamma(\sigma\to\gamma\gamma)=(2.6\pm 0.3) keV. It is argued that the mass predicted by the QLLσ\sigmaM corresponds to the γγσNN\gamma\gamma\to\sigma\to NN reaction, i.e. to a tt-channel pole of the γNNγ\gamma N\to N\gamma reaction. Large -angle Compton scattering experiments revealing effects of the σ\sigma meson in the differential cross section are discussed. Arguments are presented that these findings may be understood as an observation of the Higgs boson of strong interaction while being part of the constituent quark.Comment: 17 pages, 6 figure

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×104(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ

    Real and Virtual Compton Scattering: the nucleon polarisabilities

    Full text link
    We give an overview of low-energy Compton scattering (gamma^(*) p --> gamma p) with a real or virtual incoming photon. These processes allow the investigation of one of the fundamental properties of the nucleon, i.e. how its internal structure deforms under an applied static electromagnetic field. Our knowledge of nucleon polarisabilities and their generalization to non-zero four-momentum transfer will be reviewed, including the presently ongoing experiments and future perspectives.Comment: 20 pages, 12 figures. Minireview/Proceedings of "Many-Body Structure of Strongly Interacting Systems", Mainz, Germany, Feb. 23-25 2011 . V2: typos corrected. version to appear in EPJ Special Topic

    Higher Order Polarizabilities of the Proton

    Get PDF
    Compton scattering results are used to probe proton structure via measurement of higher order polarizabilities. Values for αE2p,βE2p,αEνp,\alpha_{E2}^p,\beta_{E2}^p,\alpha_{E\nu}^p, βEνp\beta_{E\nu}^p determined via dispersion relations are compared to predictions based upon chiral symmetry and from the constituent quark model. Extensions to spin-polarizabilities are also discussed.Comment: 18 pages, revised version with one reference adde

    Compton Scattering and the Spin Structure of the Nucleon at Low Energies

    Get PDF
    We analyze polarized Compton scattering which provides information on the spin-structure of the nucleon. For scattering processes with photon energies up to 100 MeV the spin-structure dependence can be encoded into four independent parameters-the so-called spin-polarizabilities γi,i=1...4\gamma_i, i=1...4 of the nucleon, which we calculate within the framework of the "small scale expansion" in SU(2) baryon chiral perturbation theory. Specific application is made to "forward" and "backward" spin- polarizabilities.Comment: 8 pages revtex file, separation between pion-pole and regular contributions detailed + minor wording changes, results and conclusions unchange

    Chiral effective field theories of the strong interactions

    Full text link
    Effective field theories of the strong interactions based on the approximate chiral symmetry of QCD provide a model-independent approach to low-energy hadron physics. We give a brief introduction to mesonic and baryonic chiral perturbation theory and discuss a number of applications. We also consider the effective field theory including vector and axial-vector mesons.Comment: 22 pages, 9 figures, proceedings of "Many-Body Structure of Strongly Interacting Systems", Mainz, Germany, Feb. 23-25 201

    Effective theory of the Delta(1232) in Compton scattering off the nucleon

    Full text link
    We formulate a new power-counting scheme for a chiral effective field theory of nucleons, pions, and Deltas. This extends chiral perturbation theory into the Delta-resonance region. We calculate nucleon Compton scattering up to next-to-leading order in this theory. The resultant description of existing γ\gammap cross section data is very good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent polarizabilities αp\alpha_p and βp\beta_p.Comment: 29 pp, 9 figs. Minor revisions. To be published in PR

    Generalized Polarizabilities of the Nucleon in Chiral Effective Theories

    Get PDF
    Using the techniques of chiral effective field theories we evaluate the so called generalized polarizabilities of the nucleon, which characterize the structure dependent components in virtual Compton scattering (VCS) as probed in the electron scattering reaction e N \to e' N gamma. Results are given for both spin-dependent and spin-independent structure effects to O(p^3) in SU(2) Heavy Baryon Chiral Perturbation Theory and to O(epsilon^3) in the SU(2) Small Scale Expansion. Finally we compare our calculations with results from the pioneering VCS experiment on the proton from Mainz.Comment: 39 pages, 12 figures, revte
    corecore