20 research outputs found

    Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Drosophila </it>embryonic central nervous system (CNS) develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals.</p> <p>Results</p> <p>To separate the respective contributions of autonomous properties versus extrinsic signals during their further development, we isolated individual midline precursors and neuroectodermal precursors at the pre-mitotic gastrula stage, traced their development <it>in vitro</it>, and analyzed the characteristics of their lineages in comparison with those described for the embryo. Although individually cultured mesectodermal cells exhibit basic characteristics of CNS midline progenitors, the clones produced by these progenitors differ from their <it>in situ </it>counterparts with regard to cell numbers, expression of molecular markers, and the separation of neuronal and glial fate. In contrast, clones derived from individually cultured precursors taken from specific dorsoventral zones of the neuroectoderm develop striking similarities to the lineages of neuroblasts that normally delaminate from these zones and develop <it>in situ</it>.</p> <p>Conclusion</p> <p>This <it>in vitro </it>analysis allows for the first time a comparison of the developmental capacities <it>in situ </it>and <it>in vitro </it>of individual neural precursors of defined spatial and temporal origin. The data reveal that cells isolated at the pre-mitotic and pre-delamination stage express characteristics of the progenitor type appropriate to their site of origin in the embryo. However, presumptive neuroblasts, once specified in the neuroectoderm, exhibit a higher degree of autonomy regarding generation of their lineages compared to mesectodermal midline progenitors.</p

    Integration of complex larval chemosensory organs into the adult nervous system of Drosophila

    Get PDF
    The sense organs of adult Drosophila, and holometabolous insects in general, derive essentially from imaginal discs and hence are adult specific. Experimental evidence presented here, however, suggests a different developmental design for the three largely gustatory sense organs located along the pharynx. In a comprehensive cellular analysis, we show that the posteriormost of the three organs derives directly from a similar larval organ and that the two other organs arise by splitting of a second larval organ. Interestingly, these two larval organs persist despite extensive reorganization of the pharynx. Thus, most of the neurons of the three adult organs are surviving larval neurons. However, the anterior organ includes some sensilla that are generated during pupal stages. Also, we observe apoptosis in a third larval pharyngeal organ. Hence, our experimental data show for the first time the integration of complex, fully differentiated larval sense organs into the nervous system of the adult fly and demonstrate the embryonic origin of their neurons. Moreover, they identify metamorphosis of this sensory system as a complex process involving neuronal persistence, generation of additional neurons and neuronal death. Our conclusions are based on combined analysis of reporter expression from P[GAL4] driver lines, horseradish peroxidase injections into blastoderm stage embryos, cell labeling via heat-shock-induced flip-out in the embryo, bromodeoxyuridine birth dating and staining for programmed cell death. They challenge the general view that sense organs are replaced during metamorphosis

    Progressive derivation of serially homologous neuroblast lineages in the gnathal CNS of <i>Drosophila</i>

    No full text
    <div><p>Along the anterior-posterior axis the central nervous system is subdivided into segmental units (neuromeres) the composition of which is adapted to their region-specific functional requirements. In <i>Drosophila melanogaster</i> each neuromere is formed by a specific set of identified neural stem cells (neuroblasts, NBs). In the thoracic and anterior abdominal region of the embryonic ventral nerve cord segmental sets of NBs resemble the ground state (2<sup>nd</sup> thoracic segment, which does not require input of homeotic genes), and serial (segmental) homologs generate similar types of lineages. The three gnathal head segments form a transitional zone between the brain and the ventral nerve cord. It has been shown recently that although all NBs of this zone are serial homologs of NBs in more posterior segments, they progressively differ from the ground state in anterior direction (labial > maxillary > mandibular segment) with regard to numbers and expression profiles. To study the consequences of their derived characters we traced the embryonic lineages of gnathal NBs using the Flybow and DiI-labelling techniques. For a number of clonal types serial homology is rather clearly reflected by their morphology (location and projection patterns) and cell specific markers, despite of reproducible segment-specific differences. However, many lineages, particularly in the mandibular segment, show a degree of derivation that impedes their assignment to ground state serial homologs. These findings demonstrate that differences in gene expression profiles of gnathal NBs go along with anteriorly directed progressive derivation in the composition of their lineages. Furthermore, lineage sizes decrease from labial to mandibular segments, which in concert with decreasing NB-numbers lead to reduced volumes of gnathal neuromeres, most significantly in the mandibular segment.</p></div
    corecore