320 research outputs found

    Electrochromic orbit control for smart-dust devices

    Get PDF
    Recent advances in MEMS (micro electromechanical systems) technology are leading to spacecraft which are the shape and size of computer chips, so-called SpaceChips, or ‘smart dust devices’. These devices can offer highly distributed sensing when used in future swarm applications. However, they currently lack a feasible strategy for active orbit control. This paper proposes an orbit control methodology for future SpaceChip devices which is based on exploiting the effects of solar radiation pressure using electrochromic coatings. The concept presented makes use of the high area-to-mass ratio of these devices, and consequently the large force exerted upon them by solar radiation pressure, to control their orbit evolution by altering their surface optical properties. The orbital evolution of Space Chips due to solar radiation pressure can be represented by a Hamiltonian system, allowing an analytic development of the control methodology. The motion in the orbital element phase space resembles that of a linear oscillator, which is used to formulate a switching control law. Additional perturbations and the effect of eclipses are accounted for by modifying the linearized equations of the secular change in orbital elements around an equilibrium point in the phase space of the problem. Finally, the effectiveness of the method is demonstrated in a test case scenario

    Design and development of a deployable self-inflating adaptive membrane

    Get PDF
    Space structures nowadays are often designed to serve just one objective during their mission life, examples include truss structures that are used as support structures, solar sails for propulsion or antennas for communication. Each and every single one of these structures is optimized to serve just their distinct purpose and are more or less useless for the rest of the mission and therefore dead weight. By developing a smart structure that can change its shape and therefore adapt to different mission requirements in a single structure, the flexibility of the spacecraft can be increased by greatly decreasing the mass of the entire system. This paper will introduce such an adaptive structure called the Self-inflating Adaptive Membrane (SAM) concept which is being developed at the Advanced Space Concepts Laboratory of the University of Strathclyde. An idea presented in this paper is to adapt these basic changeable elements from nature’s heliotropism. Heliotropism describes a movement of a plant towards the sun during a day; the movement is initiated by turgor pressure change between adjacent cells. The shape change of the global structure can be significant by adding up these local changes induced by local elements, for example the cell’s length. To imitate the turgor pressure change between the motor cells in plants to space structures, piezoelectric micro pumps are added between two neighboring cells. A passive inflation technique is used for deploying the membrane at its destination in space. The trapped air in the spheres will inflate the spheres when subjected to vacuum, therefore no pump or secondary active deployment methods are needed. The paper will present the idea behind the adaption of nature’s heliotropism principle to space structures. The feasibility of the residual air inflation method is verified by LS-DYNA simulations and prototype bench tests under vacuum conditions. Additionally, manufacturing techniques and folding patterns are presented to optimize the actual bench test structure and to minimize the required storage volume. It is shown that through a bio-inspired concept, a high ratio of adaptability of the membrane can be obtained. The paper concludes with the design of a technology demonstrator for a sounding rocket experiment to be launched in March 2013 from the Swedish launch side Esrange

    Impairment in preattentive visual processing in patients with Parkinson's disease

    Get PDF
    We explored the possibility of whether preattentive visual processing is impaired in Parkinson's disease. With this aim, visual discrimination thresholds for orientation texture stimuli were determined in two separate measurement sessions in 16 patients with idiopathic Parkinson's disease. The results were compared with those of 16 control subjects age-matched and 16 young healthy volunteers. Discrimination thresholds were measured in a four-alternative spatial forced-choice paradigm, in which subjects judged the location of a target embedded in a background of distractors. Four different stimulus configurations were employed: (i) a group of vertical targets among horizontal distractors (`vertical line targets'); (ii) targets with varying levels of orientation difference on a background of spatially filtered vertically oriented noise (`Gaussian filtered noise'); (iii) one `L' among 43 `+' signs (`texton'), all of which assess preattentive visual processing; and (iv) control condition, of one `L' among 43 `T' distractors (`non-texton' search target), which reflects attentive visual processing. In two of the preattentive tasks (filtered noise and texton), patients with Parkinson's disease required significantly greater orientation differences and longer stimulus durations, respectively. In contrast, their performance in the vertical line target and non-texton search target was comparable to that of the matched control subjects. These differences were more pronounced in the first compared with the second session. Duration of illness and age within the patient group correlated significantly with test performance. In all conditions tested, the young control subjects performed significantly better than the more elderly control group, further indicating an effect of age on this form of visual processing. The results suggest that, in addition to the well documented impairment in retinal processing, idiopathic Parkinson's disease is associated with a deficit in preattentive cortical visual processing

    Brain imaging in a patient with hemimicropsia

    Get PDF
    Hemimicropsia is an isolated misperception of the size of objects in one hemifield (objects appear smaller) which is, as a phenomenon of central origin, very infrequently reported in literature. We present a case of hemimicropsia as a selective deficit of size and distance perception in the left hemifield without hemianopsia caused by a cavernous angioma with hemorrhage in the right occipitotemporal area. The symptom occurred only intermittently and was considered the consequence of a local irritation by the hemorrhage. Imaging data including a volume-rendering MR data set of the patient’s brain were transformed to the 3-D stereotactic grid system by Talairach and warped to a novel digital 3-D brain atlas. Imaging analysis included functional MRI (fMRI) to analyse the patient’s visual cortex areas (mainly V5) in relation to the localization of the hemangioma to establish physiological landmarks with respect to visual stimulation. The lesion was localized in the peripheral visual association cortex, Brodmann area (BA) 19, adjacent to BA 37, both of which are part of the occipitotemporal visual pathway. Additional psychophysical measurements revealed an elevated threshold for perceiving coherent motion. which we relate to a partial loss of function in V5, a region adjacent to the cavernoma. In our study, we localized for the first time a cerebral lesion causing micropsia by digital mapping in Talairach space using a 3-D brain atlas and topologically related it to fMRI data for visual motion. The localization of the brain lesion affecting BA 19 and the occipitotemporal visual pathway is discussed with respect to experimental and case report findings about the neural basis of object size perception

    Host and abiotic constraints on the distribution of the pine fungal pathogen Sphaeropsis sapinea (= Diplodia sapinea)

    Get PDF
    Plant fungal pathogens are an increasing emerging threat as climate change progresses. Sphaeropsis sapinea (syn. Diplodia sapinea), the causal fungal agent of Diplodia tip blight, is a major pathogen of pines of forestry and ornamental relevance in Europe and worldwide. Here, we combined molecular-based field surveys in a common-garden setting and across an elevation gradient with historical records, cultivation-based growth experiments and microscopy to report on host and abiotic constraints on the distribution of S. sapinea. Using the arboretum at the Botanical Garden Berlin, Germany, to control for environmental variability, S. sapinea was detected on all seven host Pinus species we studied. However, P. sylvestris is the only species in which the fungus was detected in symptomless needles at the arboretum, and the most frequently recorded host for over a century, suggesting that it is the main, and perhaps, potential original host. In addition, sampling symptomatic needles in four out of the seven same species across a gradient from 200 to 2,100 m of elevation in the French Alps, S. sapinea was not detected at elevation higher than 800 m. Abiotic constraints were also supported by reduced growth of isolates of S. sapinea at low temperature under controlled conditions, but a 35°C prior stress exposure increased the subsequent growth of S. sapinea within its optimal temperature range (20-30°C). Altogether, our study thus not only suggests that S. sapinea is more likely to cause tip blight in P. sylvestris compared to the other species we studied, but also that in the current context of global climate change with predicted temperature increases, the fungus could infect a wider range of pine hosts and locations worldwide

    Bottleneck Routing Games with Low Price of Anarchy

    Full text link
    We study {\em bottleneck routing games} where the social cost is determined by the worst congestion on any edge in the network. In the literature, bottleneck games assume player utility costs determined by the worst congested edge in their paths. However, the Nash equilibria of such games are inefficient since the price of anarchy can be very high and proportional to the size of the network. In order to obtain smaller price of anarchy we introduce {\em exponential bottleneck games} where the utility costs of the players are exponential functions of their congestions. We find that exponential bottleneck games are very efficient and give a poly-log bound on the price of anarchy: O(logLlogE)O(\log L \cdot \log |E|), where LL is the largest path length in the players' strategy sets and EE is the set of edges in the graph. By adjusting the exponential utility costs with a logarithm we obtain games whose player costs are almost identical to those in regular bottleneck games, and at the same time have the good price of anarchy of exponential games.Comment: 12 page

    Visual contrast response functions in Parkinson's disease: evidence from electroretinograms, visually evoked potentials and psychophysics

    Get PDF
    Objectives: Visual contrast detection thresholds and suprathreshold contrast discrimination thresholds were compared to luminance and flash/pattern electroretinograms (ERG) and visually evoked potentials (VEP) in patients with Parkinson's disease (n=31), patients with multiple system atrophy (n=6), patients with progressive supranuclear palsy (n=6) and control patients without central nervous disease (n=33). Methods: The stimuli were luminance modulated full-field (flash) or horizontally oriented sinewave gratings (pattern), the latter having either a low (0.5 cycles/deg) or medium (4.0 cycles/deg) spatial frequency. Stimulus contrast ranged from 10 to 80% so that contrast response functions could be derived. Results: Contrast thresholds were higher in the patients with Parkinson's disease than in the control patients. Contrast discrimination thresholds were also somewhat elevated in patients with Parkinson's disease. Pattern ERG amplitudes were significantly reduced in patients with Parkinson's disease for the medium spatial frequency stimulus, but less for the low spatial frequency and flash stimuli. Conclusions: Our results suggest that Parkinson’s disease impairs contrast processing in the retina. VEP amplitudes did not significantly differ between the groups for the conditions tested. Patients with progressive supranuclear palsy also showed impaired contrast perception and reduced ERG amplitudes, whereas patients with multiple system atrophy were less impaired

    Orbital dynamics of "smart dust" devices with solar radiation pressure and drag

    Get PDF
    This paper investigates how perturbations due to asymmetric solar radiation pressure, in the presence of Earth shadow, and atmospheric drag can be balanced to obtain long-lived Earth centred orbits for swarms of micro-scale 'smart dust' devices, without the use of active control. The secular variation of Keplerian elements is expressed analytically through an averaging technique. Families of solutions are then identified where Sun-synchronous apse-line precession is achieved passively to maintain asymmetric solar radiation pressure. The long-term orbit evolution is characterized by librational motion, progressively decaying due to the non-conservative effect of atmospheric drag. Long-lived orbits can then be designed through the interaction of energy gain from asymmetric solar radiation pressure and energy dissipation due to drag. In this way, the usual short drag lifetime of such high area-to-mass spacecraft can be greatly extended (and indeed selected). In addition, the effect of atmospheric drag can be exploited to ensure the rapid end-of-life decay of such devices, thus preventing long-lived orbit debris
    corecore