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Electrochromic Orbit Control for Smart-Dust Devices 

Charlotte Lücking, Camilla Colombo and Colin R. McInnes 

University of Strathclyde, Glasgow, G1 1XJ, United Kingdom 

Recent advances in MEMS (micro electromechanical systems) technology are leading to spacecraft which are the 

shape and size of computer chips, so-called SpaceChips, or ‘smart dust devices’. These devices can offer highly 

distributed sensing when used in future swarm applications. However, they currently lack a feasible strategy for 

active orbit control. This paper proposes an orbit control methodology for future SpaceChip devices which is based 

on exploiting the effects of solar radiation pressure using electrochromic coatings. The concept presented makes use 

of the high area-to-mass ratio of these devices, and consequently the large force exerted upon them by solar radiation 

pressure, to control their orbit evolution by altering their surface optical properties. The orbital evolution of Space 

Chips due to solar radiation pressure can be represented by a Hamiltonian system, allowing an analytic development 

of the control methodology. The motion in the orbital element phase space resembles that of a linear oscillator, which 

is used to formulate a switching control law. Additional perturbations and the effect of eclipses are accounted for by 

modifying the linearized equations of the secular change in orbital elements around an equilibrium point in the phase 

space of the problem. Finally, the effectiveness of the method is demonstrated in a test case scenario.  

Notation 

a  semi-major axis [m] 

SRPa  acceleration due to solar radiation pressure 

[m/s
2
] 

c  speed of light in vacuum [m/s] 

Rc  coefficient of reflectivity 

e  eccentricity 

0e  equilibrium eccentricity 

ce  central eccentricity to a libration in the phase 

space 

crite  critical eccentricity 

f  true anomaly [rad] 

cf  central true anomaly in control algorithm [rad] 

, ,,e in e outf f  true anomaly at which spacecraft enters/exits 

eclipse [rad] 

,min maxf f  true anomaly at which negative/positive change 

in semi-major axis is largest [rad] 

F  solar flux [W/m
2
] 

H  Hamiltonian 

2J  second zonal harmonic coefficient of the Earth 

n  orbital rate of the Earth around the sun [rad/s] 

r  Cartesian radial distance to equilibrium point in 

polar plot 

ER  radius of the Earth [m] 

v  Cartesian evolution speed along phase lines in 

polar plot 

$x,y$ Cartesian coordinates in the polar plot of e and 

  

  solar radiation pressure parameter 

  J2 effect parameter 

  angle between Sun-Earth line and direction of 

the vernal equinox [rad] 

  gravitational parameter of the Earth [m
3
/s

2
] 

  argument of perigee [rad] 

  right ascension of the ascending node [rad] 

  sun-perigee angle [rad] 

  area-to-mass ratio [m
2
/kg] 

S  (index) referring to a stable goal orbit 

 (overhead) linearized coordinates 

Introduction 

The orbital dynamics of high area-to-mass ratio objects 

have long been investigated in the guise of natural planetary 

and interplanetary dust dynamics. Such motion is highly 

non-Keplerian due to the significant influence of 

perturbations such as solar radiation pressure (SRP), 

aerodynamic drag, Poynting-Robertson drag and 

electrostatic forces [1]. Insights into the dynamics of such 

natural systems can provide important tools for 

investigating the dynamics of engineered „smart dust‟ 

devices such as SpaceChips. Area-to-mass ratio increases 

with decreasing length-scale since mass scales as length-

scale cubed, while area scales as length-scale squared [2]. 

Although there have been investigations directly into 

the dynamics of high area-to-mass-ratio spacecraft, these 

remained sparse until recent interest driven by solar sailing. 

Before this growing interest, work on high area-to-mass 

ratio spacecraft stemmed from early missions such as the 

Echo reflective balloon satellites for passive terrestrial 

communications [3]. The unusual evolution of Echo‟s orbit 

was understood as due to its high reflectivity and area-to-

mass ratio and predictions based on the effect of solar 

radiation pressure which matched the observed orbit for 

Echo. Echo 1A and Echo 2 had area-to-mass ratios of 9.6 

m2/kg and 5.2 m2/kg respectively. Later studies 

investigated the novel astrodynamics of these spacecraft, 

assuming them to behave completely passively [4]. More 

recently, stable orbits have been identified and their long-

term evolution analyzed for high-area-to-mass ratio 

spacecraft under the influence of solar radiation pressure 

with or without eclipses, drag and J2 [5-8]. Active control 

of the influence of SRP has mainly been the subject of solar 
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sailing, where a change in the attitude of the sail is used to 

direct the SRP effect on the spacecraft. 

Micro-scale spacecraft pose a different challenge for 

orbit control because they are highly perturbed by SRP and 

are not suitable for conventional orbit control methods due 

to their small length-scale. As the development of MEMS 

spacecraft advances, the need for a simple and effective 

orbit control method grows. Recently, a number of projects 

to develop satellites-on-a-chip and “smart dust” devices 

have emerged [9-11]. Satellites-on-a-chip, also termed 

SpaceChips, are centimeter-scale spacecraft with sensing, 

communicating, computing and power capabilities which 

are envisioned to be used for swarming missions to provide 

highly distributed sensing. Their advantages are low 

manufacture and launch costs and high spatial resolution 

for sensing due to the potentially large number of devices in 

a swarm. Proposed orbit control methods range from 

passive SRP control [11] and Lorentz-force propulsion [12] 

to spacecraft locally organized by Coulomb forces [13]. 

The concept proposed in this paper is to alter the 

coefficient of reflectivity of a SpaceChip device by using an 

electrochromic coating to control the spacecraft‟s orbit 

through modulation of the SRP perturbation. This is 

advantageous for SpaceChip-scale devices since no moving 

parts are required. Electrochromic materials change their 

optical properties when an electrical current is applied. 

They are already widely used in terrestrial applications such 

as intelligent sunshades, tinting windows and flexible thin 

film displays and have been used in space applications, 

albeit not for orbit control. The recently launched IKAROS 

solar sailing demonstrator uses electrochromic surfaces on 

the sail to adjust its attitude [14] and electrochromic 

radiators have been developed for thermal control [15]. A 

recent proposal to design the orbits of micro-particles by 

engineering their lightness number, the ratio between 

acceleration due to SRP and acceleration due to solar 

gravity [16], highlights the current interest in the 

exploitation of orbital perturbations as a means of trajectory 

manipulation of micro-scale artificial objects using simple 

control methods.  

SpaceChip designs presented in the literature have area-

to-mass ratios between 0.4 [10] and 17.3 m2/kg [11]. In this 

paper we consider area-to-mass ratios larger than 5 m2/kg 

to exploit the highly perturbed orbital dynamics caused by 

SRP. At these high area-to-mass ratios the orbital dynamics 

exhibit large periodic responses in the orbital elements of 

eccentricity and Sun-perigee angle. In this paper this 

behavior will be exploited to formulate a control law based 

on a linear oscillator in the phase space representing the 

orbital evolution with different coefficients of reflectivity 

achieved with electrochromic coatings. Thus, a novel 

propellant-less method of orbit control and one applicable 

to smart dust devices is introduced. An idealized SpaceChip 

model is used in which the whole of the Sun-facing side 

switches reflectivity and is either completely absorptive 

( 1)Rc 
 or completely reflective 

( 2)Rc 
. We are 

assuming the SpaceChips to be passively Sun-pointing. 

This can be achieved by engineering the surface of the 

SpaceChip as shown in [11]. The details of the SpaceChip 

configuration are not considered here, as the focus of this 

paper lies in orbital dynamics and control theory. In the 

next section the analytical basis for the perturbed orbit 

evolution is introduced and the control method presented. 

The following section deals with the influences of eclipses 

on the orbit evolution and how these can be accounted for 

in the control algorithm. The results of case studies for the 

numerical verification of the control method in an Earth 

orbiting application are shown in section 0 followed by 

conclusions. It is noted that for science applications the 

methodology can be applied to orbits about other central 

bodies. 

The Hamiltonian orbital dynamics 

A. The Hamiltonian expression of the orbit evolution 

due to SRP and J2 perturbation 

The model used in this paper considers an orbit which 

lies in the ecliptic plane and can be described with three 

orbital parameters, the semi-major axis a, the eccentricity e 

and the angle  between the Sun-line and the orbit perigee, 

also defined as the Sun-perigee angle, as shown in Figure 1. 

When considering the J2 Earth oblateness perturbation the 

tilt of the Earth‟s axis is neglected to allow an analytical 

development of the problem. 

 

Figure 1. In-plane orbit geometry. 

For an orbit which lies in the ecliptic plane and is only 

perturbed by solar radiation pressure (SRP) and the J2 

perturbation, the dynamics in the e  and   phase space can 

be described by the Hamiltonian 
2,SRP JH  as found by 

Krivov and Getino [5]: 

 
2

2

, 3
2

( , 1 cos

3 1

)SRP JH e ee

e


      



 (1) 

where again   is the angle between the direction of the 

incoming solar radiation and the direction of the orbit 

perigee from the centre of the Earth. Eq. (1) describes the 

secular evolution of the orbital elements, obtained through 

an averaging procedure. This equation does not take into 

account eclipses and the tilt of the Earth‟s axis with respect 

to the ecliptic plane. The parameter   is related to the 

influence of solar radiation pressure on the orbit and   is 

related to the J2 effect: 
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



  

where n  is the orbital rate of the Earth around the Sun 

and 
SRPa  is the acceleration the spacecraft experiences due 

to solar radiation pressure. For an Earth-orbiting object with 

area-to-mass ratio   and coefficient of reflectivity 
Rc  the 

term 
SRPa  can be calculated using the solar energy flux at 

Earth F  and the speed of light c  as follows: 

 
SRP R

F
a c

c
   

Krivov and Getino [5] divide the parameter space of 

semi-major axis and area-to-mass ratio into three distinct 

regions. The behaviors of spacecraft with the area-to-mass 

ratios investigated in this paper (less than 20 m
2
/kg) are all 

within region I for high-altitude orbits (a > 30,000 km). 

Region I is dominated by solar radiation pressure with the 

Earth‟s oblateness only having a small effect on the orbital 

evolution. This means that for the orbits and spacecraft 

investigated here the J2 perturbation can initially be 

neglected when devising the control strategy and the 

Hamiltonian can be reduced to: 

 2( , ) 1 cosSRPH e e e       (2) 

This expression was used by Oyama et al. to describe 

solar sail orbits for geomagnetic tail exploration at apogee 

distances of 30 Earth radii [7]. The resulting phase space 

diagram can be divided into three areas. For 1SRPH    it 

can be shown that the behavior is librational. This means 

that the orbital eccentricity and perigee angle librate 

between two values in the form of a loop in the phase 

space. These orbits have a perigee within 90 degrees of the 

direction of the Sun, while perigee angle and eccentricity 

librate around    and an equilibrium eccentricity 

respectively. For 1 SRPH      it can be shown that the 

behavior is rotational. This means the perigee angle will 

continually regress while the eccentricity periodically 

librates. These orbits are most eccentric when the perigee is 

Sun-pointing and least eccentric when the apogee is Sun-

pointing. The last area is for orbits with 
SRPH   . These 

will eventually reach 1e   and decay as the orbit perigee 

intersects the surface of the Earth. To test the premise that 

for high semi-major axes the J2 perturbation can be 

neglected a comparison between Eq. (1) and Eq. (2) was 

performed. The normalized distance between the positions 

in the phase space calculated with the two different 

equations was averaged over one loop. Since the time for 

the completion of a full loop varies for the SRP and J2 case, 

the positions were not compared at the same time step but 

rather the same fraction of loop completion. The evolution 

of orbits with an initially Sun-facing perigee (ϕ = 180 deg) 

and different starting eccentricities is reported in Figure 2 

for four different semi-major axes. In this figure the 

inaccessible regions are shaded in grey with the critical 

eccentricity ecrit marked in a dark grey, which represents the 

eccentricity at which the perigee equals the Earth‟s radius 

RE: 

 1 E

crit

R
e

a
    

It is clear that the two evolutions differ significantly for 

the 10,000 km orbits but become more similar with 

increasing semi-major axis. This can also be seen in Figure 

3 which shows the average normalized distance between 

the two orbit evolutions as a function of semi-major axis. 

For high semi-major axis orbits this is small enough to be 

neglected. 

 

Figure 2. Evolution of the orbit of a 20 m2/kg spacecraft with cR = 1.5 

in the phase space with SRP and J2 Hamiltonian and SRP only 

Hamiltonian. 

 

Figure 3. Average normalized distance (logarithmic) in the phase 

space as a function of semi-major axis. 
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B. Equilibrium points in the phase space 

In this subsection the areas in the orbital element phase 

space in which a spacecraft can be stabilized are identified. 

This is necessary in order to define a goal orbit for orbital 

control maneuvers. Such maneuvers would seek to navigate 

SpaceChips towards a long-term stable position. 

It can be shown that the secular rate of change of the 

eccentricity and Sun-perigee angle with respect to the true 

longitude of the Sun,  , in the solar radiation pressure 

only case are [5]: 

 

2

2

1 sin

1
cos 1

de
e

d

d e

d e

 



 



  


  

  (3) 

This is the rate of change of the spacecraft‟s orbital 

parameters averaged over one orbital revolution around the 

Earth. It can be seen that the eccentricity has a stable point 

at {0, }   whereas the Sun-perigee angle can only be 

kept constant for 3
2 2

 
  . Therefore, a phase space 

equilibrium point can only exist at    and a fixed 

equilibrium eccentricity 
0e . This equilibrium position was 

previously identified as stable for the solar sail mission 

GeoSail [6]:  

 
0

21
e







  

The Hamiltonian has its lowest value of 21  at this 

phase space equilibrium point. 

When considering electrochromic control, instead of a 

single point, a line of possible stable points emerge which 

span the two equilibria resulting from different reflectivity 

values provided by the coating. Here we select two 

different solar radiation pressure parameters, 
1  and 

2 corresponding to two different reflectivity states with 

1 2  . The condition on eccentricity for a stable 

controlled equilibrium is then 

 1 2

2 2

1 21 1
Se

 

 
 

 
 (4) 

At these points only the change in eccentricity is zero 

while the change in Sun-perigee angle with one reflectivity 

has the opposite sign to that with the other as illustrated in 

Figure 4. The stabilization at the point ( , )S SP e  with 
Se  

defined in Eq. (4) can be achieved with a very simple 

switching control law for ,1 ,2R Rc c : 

 
when 

when 

R,1

R,2

c

c

 

 




 (5) 

Using this strategy a SpaceChip experiences a 

controlled equilibrium as the derivative of   is positive for 

0   and negative for 0  . This causes the Sun-perigee 

angle to oscillate closely around   and thus the 

eccentricity to remain constant. This control strategy was 

first introduced in Ref. [17] which proposed a mission 

concept employing a SpaceChip swarm for mapping the 

upper layers of the atmosphere. The orbital parameters are 

evaluated once per orbital revolution to avoid a jittering 

control response. Alternatively a dead band could be 

introduced. 

Ref. [18] uses an artificial potential field control 

algorithm in the orbital element phase space to stabilize 

spacecraft at a greater range of points. It allows a 

reflectivity change twice per orbit and uses the angles of 

true anomaly where the switch takes place as control 

parameters. The resulting area in the phase space in which 

stabilization is possible includes the range described in Eq. 

(4). However, the control algorithm is more complex and 

requires the solution of a two-dimensional optimization 

problem. This is computationally far more expensive than 

the algorithm described in Eq. (5) and possibly not suited 

for SpaceChips with limited computing capabilities. 

 

Figure 4. Phase space for a 20 m2/kg spacecraft with two different 

reflectivity coefficients cR,1 = 1  and cR,2 = 2 highlighting the region in 

which the orbit can be stabilized using the simple switching control 

law (geo-synchronous orbit used for illustration). 

C. Orbit control law 

The simple switching control defined in Eq. (5) can 

stabilize to a point to the orbital element phase space. An 

equally simple control law for the navigation through the 

phase space is now sought. In this section it will be shown 

that a bang-bang control, similar to the time-optimal control 

of a linear oscillator, can be applied to the problem [19]. 

This is possible because the solar radiation pressure and 

J2 Hamiltonian in a polar plot, with coordinate sine   and 

cose   (Figure 5b), can be isomorphically projected onto 

the classical pendulum phase space which consists of 
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concentric circles around the stable equilibrium position. 

The superposed phase flow field lines of the orbital 

evolution with two different values for   correspond to the 

phase space of a linear oscillator with two different centers 

of oscillation. In both cases the two equilibria lie on an axis 

with respect to which all phase lines are symmetrical. No 

phase line can cross another and there are no other 

equilibria. 

 

Figure 5. Phase space plot (a) and polar plot (b) for a 20 m2/kg 

spacecraft on a geosynchronous orbit. 

To navigate a spacecraft to any stable point PS 

identified in Eq. (4), the values of the Hamiltonian at the 

point with 1  and 2  have to be identified: 

 

2

,1 1

2

,2 2

1

1

S S S

S S S

H e e

H e e





   

   
  

With these values the control law can then be 

formulated. The desired position can be reached by using 

R,1c  when   , unless the current orbit is within the loop 

described by ,1SH , and by using R,2c  in when   , unless 

the correct orbit is within the loop described by 
,2SH . 

Figure 6 illustrates this control law as formulated below: 

 

2 ,2

2 ,2

1 ,1

1 ,1

if ( ) ( )

if ( ) ( )

if ( ) ( )

if ( ) ( )

S R,2

S R,1

S R,1

S R,2

H H c

H H c

H H c

H H c

 

 

 

 

   

   

   

   

 (6) 

where H1 is the value of the Hamiltonian with 
1  at the 

current position and H2 is the value of the Hamiltonian with 

2  at the current position. H1 and H2 change during the 

maneuver as they depend on the current position, while HS,1 

and HS,2 remain constant as they depend on the desired goal 

position. Figure 6 displays the phase space dynamics when 

applying the control law formulated above. It can be seen 

that the desired final position can be reached from all initial 

positions in the phase space excluding those which would 

inevitably lead to the eccentricity exceeding unity. 

 

Figure 6. Bang-bang switching law in the phase space to navigate a 20 

m2/kg spacecraft on a geosynchronous orbit to the stable position 

marked with a black circle. 

D. Comparison with a linear oscillator 

The proposed switching control algorithm with two 

fixed reflectivity parameters is the same as the optimal 

control of a linear oscillator. In the subsection the two are 

compared to estimate how close the proposed control 

algorithm comes to be being time optimal. 

We are considering the evolution in eccentricity and 

orientation alone, which occurs naturally when eclipses are 

neglected and reflectivity switches do not occur more than 

once over several orbits. In this case the algorithm is time-

optimal in most of the phase space as it represents the only 

viable control path. There are two regions in the phase 

space in which time-optimality is non-trivial. These are the 

areas in which two possible paths exist to connect two 
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points within the respective area. These regions are 

highlighted in Figure 7 (in a polar plot). In the case of a 

linear oscillator the switching solution is always time-

optimal even within the highlighted areas because the 

period of one oscillation is constant and equal for both 

control options, and the speed along each control path is 

constant. Therefore in the linear oscillator problem the 

shortest path connecting two points is always the fastest 

[19]. The same conditions are not true for the phase space 

control we consider here. In this section we investigate how 

close the phase space control comes to fulfilling the two 

conditions, in other words, (1) how far from equal are the 

phase space periods with two different reflectivity 

coefficients, and (2) how far from constant is the speed in 

the phase space. These two conditions will de addressed in 

the following paragraph. We refer to „phase space period‟ 

as the period to cover one complete loop in the phase space; 

this is far longer than the period for completing one single 

orbit around the Earth. 

 

Figure 7. Switching law with areas in which proof of time-optimal 

control is not trivial highlighted. 

First the condition on the period of the phase space 

evolution is investigated. For time-optimality it is required 

that the period is the same for both values of reflectivity 

and regardless of the starting position. Oyama et al. [7] find 

an expression for the period of time T to  follow a closed 

phase path in the case of SRP only: 

 
2

2

1
T

n







  

This means that for a given area-to-mass ratio, semi-

major axis and reflectivity the period to complete one phase 

space period is constant and not dependent on the starting 

orbit. However, higher   SpaceChips complete one period 

around a closed phase curve faster. The difference is small: 

a 10 m
2
/kg geosynchronous spacecraft would only be 1.8% 

faster with 2Rc  than with 1Rc  . A 20 m
2
/kg spacecraft 

could increase its libration period by just 6.8%. 

The second condition to investigate is how much the 

rate of orbit evolution in the polar plot deviates from the 

average. An analytic formula for the speed of progression 

along the phase curves can be found as shown in Appendix 

A: 

  2 2 2 21 2 1 cosv e e e         (7) 

This equation can be numerically evaluated to find the 

average, the minimum and the maximum speed over one 

evolution period (i.e. one loop in the phase space) for a 

given initial orbit and spacecraft characteristics. Using this 

information the maximum relative divergence from the 

average speed can be found as a function of area-to-mass 

ratio and reflectivity. Figure 8 shows the results of this 

analysis. It depicts the maximum relative difference, 

max avg avgv v v , between actual and average speed of 

progression along any phase curve for different area-to-

mass ratio spacecraft with coefficients of reflectivity of 1 or 

2. It can be seen that a 10 m
2
/kg spacecraft will never 

diverge more than 1.5% from the average progression speed 

and a 20 m
2
/kg spacecraft stays within  5%. 

It can be seen that for both conditions for the deviation 

from time optimality is not great with the parameters used 

in the proposed phase space control. It can therefore be 

assumed that the resulting maneuver times are approaching 

the optimum. 

 

Figure 8. Maximum divergence from average progression speed 

normalized relative to the average along polar phase lines for 

geosynchronous spacecraft with reflectivity of 1 (black) and 2 (gray). 

Modifications to the Hamiltonian model 

A. Effect of eclipses on the orbital evolution 

There are several effects which have not been taken into 

account in the Hamiltonian model. The most dominant of 

these effects is eclipses, which will occur each orbit since 

the orbit is assumed to lie in the ecliptic plane. Eclipses 

have two main effects on the Hamiltonian dynamics. They 

compress the phase space in the direction of eccentricity, so 

that, at fixed semi-major axis, the equilibrium eccentricity 

is lower and it adds a precession of the orientation of the 
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semi-major axis. The precession of the semi-major axis is 

positive for 0 π  , negative for π 2π   and zero if 

{0,π}  . The effect is such that a spacecraft will return to 

the semi-major axis orientation it started from after the 

completion of a full period in the phase space during which 

the semi-major axis precesses as shown in Ref. [8]. Both 

effects are small at the distances considered in this paper 

but are still problematic. The change in semi-major axis 

during the period further shifts the equilibrium point as 
0e  

is a function of   which in turn is dependent on the semi-

major axis. With decreasing semi-major axis the 

eccentricity of the equilibrium point will also decrease. 

Furthermore additional perturbations act on the spacecraft. 

Atchison and Peck show that in the case of SpaceChips 

with area-to-mass ratios in the order of 10 m
2
/kg and in 

high altitude orbits the strongest of these effects is the J2 

precession already discussed in section 0.A [2]. 

Although small, the effects of neglecting eclipses and 

additional perturbations can increase the transfer time 

considerably because they can lead to the spacecraft 

missing its target equilibrium point and having to complete 

another period until it reaches the goal. Since the period of 

evolution along a closed phase curve is the same regardless 

of the size of the loop (when only SRP is considered) this 

can lead to a doubling of transfer time. One solution is to 

add a margin to the control algorithm that is linearly 

proportional to the difference between actual and desired 

eccentricity. This way, a spacecraft would switch its 

reflectivity too soon rather than too late. Although not ideal, 

this is far less time consuming.  

B. Linearized phase space equations to account for 

eclipses 

In this and the following subsection approaches are 

discussed to account for the effects of eclipses. The phase 

space perturbed by the effect of eclipses can be 

approximated by a linearization process. The original 

Hamiltonian is linearized around the equilibrium condition 

in a Cartesian coordinate system based on the polar plot. 

The linearized equations are then modified to account for a 

shift in the centre of rotation away from the equilibrium 

point. The expression for the rotational centre is a function 

of position and the true equilibrium point location. The 

effect of eclipses can then be approximated by substituting 

the analytical equilibrium eccentricity 
0e  with the real 

equilibrium which is found numerically taking into account 

eclipses.  

First, the polar coordinates ( , )e   are transformed into a 

set of auxiliary Cartesian coordinates ( , )x y . 

 

2 2cos

sin arctan

x e e x y

y
y e

x



 

  

 
 (8) 

The derivatives of the Cartesian coordinates are (with 

Eq. (3)): 

 
2

sin

1 cos

x e

y e e



 



   
  

 Inserting Eq. (8) delivers: 

 
2 21

x y

y x y x



    
 (9) 

 

Linearizing Eq. (9) around the equilibrium point 
0( , )e   

then defines Cartesian coordinates ˆ ˆ( , )x y  for any initial 

radial distance r along the x-direction ( 0 )     : 

 
0

2

ˆ( ) cos

ˆ( ) 1 sin

x e r

y r

 

  

  

  
 (10) 

It can be seen that the radial distance in the y-direction 

is 21r  . The linearization Eq. (10) assumes a static 

centre of rotation, 
0e . We introduce a hypothetical point 

with    and 
ce e , the central eccentricity which has 

equal distance to the maximum and minimum eccentricity 

within one loop in the phase space. It is equal to the 

equilibrium eccentricity at the equilibrium point, but 

decreases with distance from 
0e . Figure 9 shows the 

position of ec and r in the polar plot for two different phase 

lines. The central eccentricity 
ce  can be found as a function 

of an initial set of orbital parameters ( , )e   by solving Eq. 

(2) for e  with   : 

 , 0
2

( , )
( , ) ( 1,2)

1
c i

i

H e
e e e i





  


 (11) 

where the index i indicates the control mode. 1i   

corresponds to 
,1Rc  and  2i   to 

,2Rc . Next the radius of 

rotation in the x -direction can be calculated: 

 
2 2

2

, 2

sin
( , ) ( cos ( , ))

1
i c i

i

e
r e e e e


  


  


 (12) 

 

Figure 9. Position of the central eccentricities ec and radial distances in 

x-direction r for two different phase lines H1 and H2 in a polar plot. 
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When using two different coefficients of reflectivity any 

set of orbital coordinates can be transformed into radial 

coordinates which are unique within one half of the phase 

space ( (0, ) ( ,2 ))       . The coordinates are 
1 2( , )r r  

and correspond to the radial distance in the x -direction 

with 
R,1c  and 

R,2c . Using Eqs. (11) and (12), Eq. (10) can 

be revised to:  

 
,

2

ˆ ( ) cos

ˆ ( ) 1 sin

i c i i

i i i

x e r

y r

 

  

  

  
 (13) 

By substituting the analytical result for the equilibrium 

point 
0e  with a numerical solution 

0,ecle  which takes into 

account the eclipses when computing 
,c ie  in Eq. (11), the 

linearization Eq. (13) becomes an accurate approximation 

of the perturbed phase space resulting from the 

compensation for eclipses. Although the real equilibrium 

0,ecle  is close to the analytical equilibrium 
0e , this step is 

necessary because maneuvers in the vicinity of the 

equilibrium are sensitive to the exact position. If an 

incorrect value for the equilibrium eccentricity is assumed 

the control algorithm could in certain cases fail to complete 

the maneuver. To find 
0,ecle , the equation for the secular 

change in   found by Colombo and McInnes [8] is 

calculated for orbits with    and the eccentricity 
0,ecle  

is found numerically for which this equation equals zero 

(see Appendix B). 

Figure 10 shows the results of the linearization 

superimposed on those of a numerical simulation with 

eclipses. For the dynamical equations which consider 

eclipses, used here for computing the numerical results the 

reader can refer to Eqs. (5)-(11) by Colombo and McInnes 

[8]. It can be seen that the linearized phase lines in Figure 

10 (b) match the numerical results far better than the 

Hamiltonian phase lines in Figure 10 (b). 

Using this approach the control algorithm in Eq. (6) can 

be revised to: 

 

2 2,

2 2,

1 2,

1 2,

if ( ) ( )

if ( ) ( )

if ( ) ( )

if ( ) ( )

S R,2

S R,1

S R,1

S R,2

r r c

r r c

r r c

r r c

 

 

 

 

   

   

   

   

  

where 
1 2( , )r r are the radial coordinates of the current 

orbit as described above and 
1, 2,( , )S Sr r  are the radial 

coordinates of the desired stable goal point. 

C. Control algorithm for constant semi-major axis 

The method described in the previous subsection can 

account for the inaccuracies caused by the effect of eclipses 

to allow more precision in the selection of the control path. 

However, it does not remove all effects of eclipses and the 

spacecraft arrive at the correct position in the ( , )e  phase 

space, but with a different semi-major axis. In this 

subsection it is shown how the electrochromic properties of 

the spacecraft can be used to keep the semi-major axis 

constant as well as efficiently navigating the spacecraft 

through the phase space. To achieve this, the reflectivity 

has to be switched twice per orbit. That way there are 

always two possible control modes. One in which the 

reflectivity is predominantly high, control mode 1, and one 

in which the reflectivity is predominantly low, control 

mode 2. The switching angles, 
1f  and 

2f  have to fulfill the 

following expression in which 
,e inf  and 

,e outf  represent the 

angles of true anomaly at which the eclipse is entered and 

exited given by Eqs. (7)-(9) in Ref. [8]: 

 

,2 2

1 1 ,

,2 2

1 1 ,

,2 ,1 ,1

,2 ,1 ,2

control mode 1: ( ) ( ) ( )

control mode 2: ( ) ( ) ( )

e out

e in

e out

e in

ff f

R R R

f f f

ff f

R R R

f f f

da da da
c df c df c df

df df df

da da da
c df c df c df

df df df

  

 

  

  

 

where ( )R

da
c

df
 is the derivative of the semi-major axis 

with respect to the true anomaly due to solar radiation 

pressure for the given reflectivity.  

 

Figure 10. Comparison between phase space with eclipses and 

Hamiltonian phase space (a) and approximating linearization (b) for a 

spacecraft with σ = 20 m2/kg and cR = 1. 
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The interval of the eclipses and the interval of 

reflectivity change 
1 2[ , ]f f  may not overlap. To find close 

to optimal switching angles with as little computational 

expense as possible we reduce the parameter from two to 

one dimensions. Instead of searching for both switching 

angles as proposed in [18], 
1 2[ , ]f f  is redefined as 

[ , ]c cf f f f   where 
cf  is the angle in the centre of the 

interval and 
1 2c cf f f f f      determines the size of 

the interval. Of these two variables only 
cf  needs to be 

found numerically, f  is found analytically by a linear 

approximation.  

First 
cf  is determined. For the maneuver to be most 

effective means the interval is to be as small as possible so 

that the orbit evolution will follow closely the behavior 

predicted by the Hamiltonian. To achieve this 
cf  is chosen 

as the angle at which the positive or negative change of 

semi-major axis over true anomaly is greatest. Whether the 

direction of the change is negative or positive depends on 

the control mode and the change in semi-major axis which 

would occur without control, a . 

 

control mode 1:

0

2

control mode 2:

0

2

c min

c max

c max

c min

f f

f f

f f

f f

 

  

 

  

   

   

   

   

  

where 
maxf  is the true anomaly where the greatest 

positive rate of change of semi-major axis over true 

anomaly occurs, and 
minf  is the angle of true anomaly 

where the greatest negative change occurs. The change of 

semi-major axis is positive when the velocity vector of the 

spacecraft is pointing away from the Sun and negative if it 

is pointing towards it. The angles at which it is maximal 

and minimal can be found by maximizing or minimizing 

the following equation which has been derived by 

combining the Gauss‟ equation for variation of semi-major 

axis [20] with the orbit geometry to deduce the direction of 

solar radiation pressure, so that the rate of change of semi-

major axis scales as: 

 sin(2 ) sin( )
da

e f f
df

       

Next f , the size of the interval in true anomaly to 

each side of the central angle 
cf , is determined. It is found 

by linear approximation: 

,

,

,

,

,1

, 2 ,1

, 2

, 2 ,1

control mode 1: 

control mode 2: 

( )( ) ( )
2 ( ) ( )

( )( ) ( )
2 ( ) ( )

e out

e in

e out

e in

f

Rc c

R R

f

f

Rc c

R R

f

da cda f da f
f c c df

df df df

da cda f da f
f c c df

df df df

   

  

 
 
 

 
 
 





(14) 

where the right hand term is the change in semi-major 

axis which would occur due to eclipses over one orbit if the 

reflectivity is constant. The integral does not have to be 

calculated numerically. Instead the analytical expressions in 

Ref. [8] are used (see Appendix C). The left term 

corresponds to the difference in change of semi-major axis 

caused by using the other reflectivity. This is assuming a 

constant rate of change of semi-major axis over that 

interval. This assumption can be made because the interval 

is small.  A comparison with the exact results for the 

required f  obtained using a numerical simulation was 

conducted and it was found that at geosynchronous semi-

major axis and eccentricities below 0.5 this simplification is 

appropriate. At higher eccentricities a numerical approach 

can be used to find f  using the value calculated in Eq. 

(14) as an initial guess.  

Using this method we can account for eclipses with 

comparatively low computational expense as all but one 

step in the control algorithm are analytical and the 

numerical step is a simple one-dimensional optimization. 

Since a linear approximation is used to determine f , and 

because we are neglecting any out-of-plane dynamics, there 

will still be a change in semi-major axis. However, it is 

expected that this change is small in comparison to using 

the method in which the reflectivity is switched only 

depending on the position in the phase space as described in 

the previous sections. Figure 11 shows the results for the 

two control modes for a geosynchronous orbit with an 

eccentricity of 0.3 and two different initial perigee angles. 

For eccentricities below 0.5 at geosynchronous semi-major 

axis 2.5f   . This causes the evolution of the orbital 

elements to follow closely the evolution with eclipses and 

the linearized approach to the control algorithm described 

in the previous section can be used. 

 

Figure 11. Switching law in control mode 1 and 2 for two example 

orbits. The arc of the orbit with cR,1 is drawn in solid and cR,2 in 

dashed. The positions at which the reflectivity is switched are marked 

with crosses. Figures (a) and (b) show the control strategy when the 

change in semi-major axis over one orbit would be positive and (c) and 

(d) show the control strategy when the change in semi-major axis 

would be negative. The left column of figures shows the control 

strategy with mainly reflectivity cR,1 and the right column shows the 

control strategy with mainly reflectivity cR,2. 
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Results 

A. Test case maneuver 

To show the effectiveness of the proposed control 

methods a test case was devised and simulated. The mission 

scenario consists of six SpaceChips with an area-to-mass 

ratio of 15 m
2
/kg which are initially in six different orbits 

with a semi-major axis of 42,000 km, eccentricity ranging 

from close to circular to under 0.5 and perigee angle 

between 90 and 270 degrees. They are to be collected into a 

stable goal orbit with 0.25Se   and   = 180°. The 

maneuver is performed using the using the linearized phase 

space introduced in section 0.B the maneuvers were 

performed with and without the constant semi-major axis 

control derived in section IV.C. The orbit was propagated 

numerically taking solar radiation pressure and the Earth 

oblateness into account, while the control algorithms use 

the linearized phase space introduced in section 0.B. The 

numerical propagation is performed using the Gauss‟ 

equations in true anomaly and taking out-of-plane dynamics 

into account. When using a full set of Keplerian orbital 

parameters, the angle   can be calculated as follows: 

 ( )        

where   is the right ascension of the ascending node 

and   the argument of perigee. The control algorithm uses 

the computationally inexpensive linearized phase space 

model. It is assumed that the spacecraft receive accurate 

information about their current state, eccentricity and  , 

once every orbit and then decide on the control mode using 

the algorithm detailed in this paper. This way it can be 

shown that the control method is also robust towards 

perturbations which have not been taken into account in the 

control algorithm such as eclipses, the J2 effect and out-of 

plane dynamics. 

The control algorithm accomplished the objective to 

assemble all six spacecraft at the desired eccentricity and 

orbit orientation. This was achieved in less than 1.3 years. 

However, the SpaceChips in the study which did not use the 

constant semi-major axis control ended up at different 

semi-major axes of between 41,000 km and 43,000 km. 

This can be avoided using the computationally more 

expensive (i.e., the reflectivity coefficient is changed twice 

per orbit) constant semi-major axis control. The evolution 

in the phase space in the latter case is shown in Figure 12. 

The evolution of all orbital parameters over the course of 

the maneuver is shown in Figure 13. In this case the semi-

major axis only varies on the order of 100 km. The cause 

for this small variation is the change in inclination which 

changes the actual eclipse angles in 3D geometry from the 

ones calculated analytically in the plane within the control 

loop. Figure 14 visualizes the evolution of the orbits during 

the maneuver. 

 

Figure 12. Maneuvers of six SpaceChips with σ = 15 m2/kg toward the 

same orbit in the phase space using the control algorithm described in 

section IV.C. 

 

 

Figure 13. Evolution of orbital parameters during the maneuvers of 

six SpaceChips with σ = 15 m2/kg toward the same orbit in the phase 

space using the control algorithm described in section IV.C. 
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Figure 14: Evolution of the orbits of the six spacecraft during the 

maneuver as a projection onto the ecliptic plane in a Sun-following 

reference frame. The arrow indicates the direction of the solar 

radiation. 

B. Long-term stability 

In Figure 13, it can be seen that the right ascension of 

the ascending node and the inclination are decreasing over 

the course of the maneuver. Although the change is small 

enough not to affect the accuracy of the controller, 

questions about the long-term stability of the goal orbit may 

be raised. A SpaceChip of the same specifications as those 

used in the maneuver simulation and using the linearized 

phase space control algorithm was propagated for fifty 

years at the goal orbit. The results of this simulation can be 

seen in Figure 15.  

 

Figure 15. Long-term evolution of a controlled spacecraft at an 

artificially stable orbit. 

It can be seen that the controlled parameters e and   

remain close to their initial value while the other orbital 

parameters oscillate within bounds. It can be concluded that 

a SpaceChip at geosynchronous altitude can be stabilized in 

the long term using the proposed control algorithm. 

C. Maneuver time 

Figure 16 shows the time until the completion of a 

maneuver using the linearized phase space control 

algorithm without controlling the semi-major axis starting 

from different points in the phase space. The hatched areas 

indicate the position from which a maneuver is impossible 

because impact with the Earth is inevitable (
crite e ). The 

stable eccentricity can be reached from any position within 

three years. 

 

Figure 16. Time until reaching goal orbit marked with x from 

different positions in the phase space (a = 42,000 km) using the 

linearized phase space control for a SpaceChips with   = 15 m2/kg. 

Conclusions 

Electrochromic orbit control has been shown to be a 

viable, efficient method for controlling the orbits of 

SpaceChips with large semi-major axes. Two models of an 

electrochromic control strategy are proposed, one based on 

linearized phase space dynamics, the other also takes into 

account the effect of eclipses. The first control algorithm is 

purely analytical and requires a change in reflectivity 

approximately twice per year. The latter control algorithm 

requires the spacecraft to switch reflectivity twice per orbit 

and uses a numerical search to the control parameter in a 

one-dimensional search space. Both control algorithms 

were tested in a simulated scenario in which a group of 

SpaceChips with different initial orbits were gathered into 

the same goal orbit. All SpaceChips reached the desired 

position within a reasonable time. In the simulation, the 

SpaceChips were propagated using the 3D Gauss‟ equations 
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with a differential equation solver considering solar 

radiation pressure and the Earth‟s oblateness. The scenario 

results show that the closed feedback control algorithm can 

cope with other minor perturbing effects at high semi-major 

axis. It was also shown that the goal orbit is long-term 

stable. The control presented in this paper can also be 

applied to other mission scenarios. For example it can be 

envisaged that a group of SpaceChips is released in a 

common orbit, from where they spread out into different 

orbits using electrochromic control. In this scenario a 

reverse maneuver to the one needed to collect the spacecraft 

would be performed. 

Appendix 

A. Derivation of the speed of evolution along the phase 

lines in the Cartesian coordinates 

This section of the appendix contains the calculations 

needed to derive Eq. (7) in Section 0.D. In order to find the 

speed of orbital evolution in polar coordinates for a given 

initial condition, a coordinate transformation has to be 

performed from ( , )e   to ( , )  . The latter is a polar 

coordinate system with the centre at the equilibrium point 

for a given  , as shown in Figure 17. The following 

expressions are found which define the transformation: 

 
2

2

2 2
( , ) 2 cos

1 1
e 

 
    

 
  

 
 (15) 

 
2

cos
1

( , ) arccos
( , )e






 


  

 




   

 
0cos cose e     (16) 

An expression for   as a function of  , H  and   is 

found by inserting Eq. (15) and Eq. (16) into Eq. (2) and 

then solving for   so that 

 

 

 
 2 2

2 2
2

2 2

2 2

2 2

1 1 cos

, ,
1 cos1

1 1 1 cos 2
1 1

1 cos

H

H

H
H

  
  

 


 

 

 

  




   
 




   
   
   

  

Defining  0e e  



   as the difference between the 

eccentricity at    and the equilibrium eccentricity gives 

the value of the Hamiltonian as a function of  : 

 

2

2 2
, 1

1 1
H   

 
    

 

   
           

    
  

Next the speed of progression along the phase curves in 

the polar plot ( , ) ( cos , sin )x y e e   is derived using: 

 

   
2 2

2 2 cos sin sin cosv x y e e e e             

and with Eq. (3) this reduces to: 

      
2

2 2, sin 1 cosv e e e e          

From Eq. (19) the following equation can be derived in 

the transformed polar coordinates system: 

 

 2 2 2 2

( , ) 1 ( , ) 2 ( , ) 1 ( , ) cos ( , )v e e e
         
                 

  

This expression was then analyzed to provide the data 

shown in Figure 8. 

 

Figure 17. Coordinate transformation to equilibrium centered 

coordinates. 

B. Calculation of the equilibrium eccentricity with 

eclipses 

This section of the appendix contains the equation used 

in the numerical calculation of 
0,ecle , the equilibrium 

eccentricity when considering in-plane orbits with eclipses 

in Section 0.B. 

 
,

,

2

0,

0

3

0, , 0, , 3

( , ) d  d 0

fun ( , ) fun ( , ) 2 0

e in

e out

f

ecl

f

ecl e in ecl e out

dd
e f f

df df

a
e f e f

a



 









 

   

 
  

where   is the gravitational parameter of the Sun, a  

is the semi-major axis of the Earth‟s orbit around the Sun 

and ,e inf  and ,e outf  are the angles of true anomaly where the 

spacecraft enters and exits eclipse with , ,e in e outf f . These 

can be found analytically in the ecliptic plane. Using the 

equations for the change in orbital elements due to solar 
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radiation pressure found by Colombo and McInnes [8] the 

indefinite integral for  , fun , can be defined  analytically: 

 

2 2 2

3
2

2 2 2

2 2 2

(1 ) 3 1
fun ( , ) arctan tan

1 2
1

cos sin(1 ) sin 1

2(1 )(1 cos ) (1 )(1 cos )

SRP

SRP

a e e f
e f a

e e
e

e f fa e e f
a

e e e f e e f







 






 

   

 
 
 

 

C. Analytical formula for the derivative of semi-major 

axis with respect to true anomaly 

This section of the appendix contains the equation used 

in the analytical calculation of the change in semi-major 

axis over an arc of true anomaly used in the control 

algorithm in Section 0.C. 

2

1

2 1( , , ) d fun ( , , , ) fun ( , , , )

f

a a

f

da
a e f a e f a e f

df
      

Using the equations for the change in orbital elements 

due to solar radiation pressure found by Colombo and 

McInnes [8] the indefinite integral for a , funa
, can be 

defined  analytically: 

 
3 22 (1 ) cos sin sin

fun ( , , , )
(1 cos )

a SRP

a e e f
a e f a

e e f

 




  
   
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