167 research outputs found

    Using a closed drainage system without vacuum

    Full text link

    Malignant minor salivary gland tumors: a retrospective study of 27 cases

    Full text link
    PURPOSE: Malignant tumors of the intra-oral minor salivary glands are uncommon. The aim of this study was to give information concerning the clinical features of these tumors, the distribution of location, treatment opportunities, and outcome. METHODS: Twenty-seven patients with malignant salivary gland tumors that were treated between January 1999 and December 2008 were evaluated retrospectively. RESULTS: Of the 27 minor salivary gland carcinomas, 48.1% were adenoid cystic carcinomas (ACC), 29.7% mucoepidermoid carcinomas (MEC), 22.2% adenocarcinomas (ADCA). The most common first symptom was a painless swelling in 60% of the cases, with the second most common symptom being ulcers (28%). Four recurrences and two metastases were found. No recurrence was observed in ADCA. All four patients experiencing a recurrence developed it in the first 3 years after treatment. CONCLUSION: Wide excision with a clinical margin of 1 cm and in large tumors, positive surgical margins or perineural infiltration and postoperative radiotherapy (RT) can be recommended; but in order to give exact information concerning the possible benefit from postoperative RT, it needs large prospective multicenter studies. Long-term follow-up controls and in particularly longer than 5 years in ACC including yearly chest X-rays should be offered to these patients because of late metastasis and recurrences

    The Middle to Late Miocene “Carbonate Crash” in the Equatorial Indian Ocean

    Get PDF
    We integrate benthic foraminiferal stable isotopes, X‐ray fluorescence elemental ratios, and carbonate accumulation estimates in a continuous sedimentary archive recovered at International Ocean Discovery Program Site U1443 (Ninetyeast Ridge, Indian Ocean) to reconstruct changes in carbonate deposition and climate evolution over the interval 13.5 to 8.2 million years ago. Declining carbonate percentages together with a marked decrease in carbonate accumulation rates after ~13.2 Ma signal the onset of a prolonged episode of reduced carbonate deposition. This extended phase, which lasted until ~8.7 Ma, coincides with the middle to late Miocene carbonate crash, originally identified in the eastern equatorial Pacific Ocean and the Caribbean Sea. Interocean comparison reveals that intense carbonate impoverishment at Site U1443 (~11.5 to ~10 Ma) coincides with prolonged episodes of reduced carbonate deposition in all major tropical ocean basins. This implies that global changes in the intensity of chemical weathering and riverine input of calcium and carbonate ions into the ocean reservoir were instrumental in driving the carbonate crash. An increase in U1443 Log (Ba/Ti) together with a change in sediment color from red to green indicate a rise in organic export flux to the sea floor after ~11.2 Ma, which predates the global onset of the biogenic bloom. This early rise in export flux from biological production may have been linked to increased advection of nutrients and intensification of upper ocean mixing, associated with changes in the seasonality and intensity of the Indian Monsoon

    Precise screw positioning at the mandibular angle: computer assisted versus template coded

    Full text link
    BACKGROUND: Buried intraoral devices for distraction osteogenesis in mandibular deformities have numerous advantages, but success depends on the precise positioning of these devices. Although most centers nowadays use template-guided techniques for precise positioning, computer navigation has been described as a promising technique. Surgical navigation during device placement could become a viable method because it affords certainty in defining a device position. METHODS: A clinical situation was simulated by means of mounting a mandible model inside a phantom head. Screws were positioned according to a preoperative plan through transoral and transbuccal approaches, with both template-coded and freehand computer navigation. RESULTS: With template-coded navigation, the medium deviation from the planned position was 0.63 mm (range, 0.00-1.24 mm). With commercial freehand surgical computer navigation, the medium deviation was significantly higher at 0.98 mm (range, 0.00-3.13 mm). CONCLUSIONS: Computer-assisted surgery can provide a high level of accuracy in the region of the mandibular angle where precision is crucial for buried intraoral distraction devices. However, template-coded guidance does provide a significantly higher level of accuracy and therefore represents the gold standard

    Measuring velocity of sound with nuclear resonant inelastic x-ray scattering

    Full text link
    Nuclear resonant inelastic x-ray scattering is used to measure the projected partial phonon density of states of materials. A relationship is derived between the low-energy part of this frequency distribution function and the sound velocity of materials. Our derivation is valid for harmonic solids with Debye-like low-frequency dynamics. This method of sound velocity determination is applied to elemental, composite, and impurity samples which are representative of a wide variety of both crystalline and noncrystalline materials. Advantages and limitations of this method are elucidated

    Pressure-dependence of electron-phonon coupling and the superconducting phase in hcp Fe - a linear response study

    Full text link
    A recent experiment by Shimizu et al. has provided evidence of a superconducting phase in hcp Fe under pressure. To study the pressure-dependence of this superconducting phase we have calculated the phonon frequencies and the electron-phonon coupling in hcp Fe as a function of the lattice parameter, using the linear response (LR) scheme and the full potential linear muffin-tin orbital (FP-LMTO) method. Calculated phonon spectra and the Eliashberg functions α2F\alpha^2 F indicate that conventional s-wave electron-phonon coupling can definitely account for the appearance of the superconducting phase in hcp Fe. However, the observed change in the transition temperature with increasing pressure is far too rapid compared with the calculated results. For comparison with the linear response results, we have computed the electron-phonon coupling also by using the rigid muffin-tin (RMT) approximation. From both the LR and the RMT results it appears that electron-phonon interaction alone cannot explain the small range of volume over which superconductivity is observed. It is shown that ferromagnetic/antiferromagnetic spin fluctuations as well as scattering from magnetic impurities (spin-ordered clusters) can account for the observed values of the transition temperatures but cannot substantially improve the agreeemnt between the calculated and observed presure/volume range of the superconducting phase. A simplified treatment of p-wave pairing leads to extremely small (≀10−2\leq 10^{-2} K) transition temperatures. Thus our calculations seem to rule out both ss- and pp- wave superconductivity in hcp Fe.Comment: 12 pages, submitted to PR

    The Middle to Late Miocene “Carbonate Crash” in the Equatorial Indian Ocean

    Get PDF
    金æČąć€§ć­Šç†ć·„ç ”ç©¶ćŸŸćœ°çƒç€ŸäŒšćŸș盀歊系We integrate benthic foraminiferal stable isotopes, X-ray fluorescence elemental ratios, and carbonate accumulation estimates in a continuous sedimentary archive recovered at International Ocean Discovery Program Site U1443 (Ninetyeast Ridge, Indian Ocean) to reconstruct changes in carbonate deposition and climate evolution over the interval 13.5 to 8.2 million years ago. Declining carbonate percentages together with a marked decrease in carbonate accumulation rates after ~13.2 Ma signal the onset of a prolonged episode of reduced carbonate deposition. This extended phase, which lasted until ~8.7 Ma, coincides with the middle to late Miocene carbonate crash, originally identified in the eastern equatorial Pacific Ocean and the Caribbean Sea. Interocean comparison reveals that intense carbonate impoverishment at Site U1443 (~11.5 to ~10 Ma) coincides with prolonged episodes of reduced carbonate deposition in all major tropical ocean basins. This implies that global changes in the intensity of chemical weathering and riverine input of calcium and carbonate ions into the ocean reservoir were instrumental in driving the carbonate crash. An increase in U1443 Log (Ba/Ti) together with a change in sediment color from red to green indicate a rise in organic export flux to the sea floor after ~11.2 Ma, which predates the global onset of the biogenic bloom. This early rise in export flux from biological production may have been linked to increased advection of nutrients and intensification of upper ocean mixing, associated with changes in the seasonality and intensity of the Indian Monsoon. ©2019. American Geophysical Union. All Rights Reserved.Embargo Period 6 month

    Secular and orbital-scale variability of equatorial Indian Ocean summer monsoon winds during the late Miocene

    Get PDF
    In the modern northern Indian Ocean, biological productivity is intimately linked to near-surface oceanographic dynamics forced by the South Asian, or Indian, monsoon. In the late Pleistocene, this strong seasonal signal is transferred to the sedimentary record in the form of strong variance in the precession band (19–23 kyr), because precession dominates low-latitude insolation variations and drives seasonal contrast in oceanographic conditions. In addition, internal climate system feedbacks (e.g. ice-sheet albedo, carbon cycle, topography) play a key role in monsoon variability. Little is known about orbital-scale monsoon variability in the pre-Pleistocene, when atmospheric CO2 levels and global temperatures were higher. In addition, many questions remain open regarding the timing of the initiation and intensification of the South Asian monsoon during the Miocene, an interval of significant global climate change that culminated in bipolar glaciation. Here, we present new high-resolution (<1 kyr) records of export productivity and sediment accumulation from International Ocean Discovery Program Site U1443 in the southernmost part of the Bay of Bengal spanning the late Miocene (9 to 5 million years ago). Underpinned by a new orbitally tuned benthic isotope stratigraphy, we use X-ray fluorescence-derived biogenic barium variations to discern productivity trends and rhythms. Results show strong eccentricity-modulated precession-band productivity variations throughout the late Miocene, interpreted to reflect insolation forcing of summer monsoon wind strength in the equatorial Indian Ocean. On long timescales, our data support the interpretation that South Asian monsoon winds were already established by 9 Ma in the equatorial sector of the Indian Ocean, with no apparent intensification over the latest Miocene

    Validation of a new three-dimensional imaging system using comparative craniofacial anthropometry

    Get PDF
    Abstract Background The aim of this study is to validate a new three-dimensional craniofacial stereophotogrammetry imaging system (3dMDface) through comparison with manual facial surface anthropometry. The null hypothesis was that there is no difference between craniofacial measurements using anthropometry vs. the 3dMDface system. Methods Facial images using the new 3dMDface system were taken from six randomly selected subjects, sitting in natural head position, on six separate occasions each 1 week apart, repeated twice at each sitting. Exclusion criteria were excess facial hair, facial piercings and undergoing current dentofacial treatment. 3dMDvultus software allowed facial landmarks to be marked and measurements recorded. The same measurements were taken using manual anthropometry, using soluble eyeliner to pinpoint landmarks, and sliding and spreading callipers and measuring tape to measure distances. The setting for the investigation was a dental teaching hospital and regional (secondary and tertiary care) cleft centre. The main outcome measure was comparison of the craniofacial measurements using the two aforementioned techniques. Results The results showed good agreement between craniofacial measurements using the 3dMDface system compared with manual anthropometry. For all measurements, except chin height and labial fissure width, there was a greater variability with the manual method compared to 3D assessment. Overall, there was a significantly greater variability in manual compared with 3D assessments (p < 0.02). Conclusions The 3dMDface system is validated for craniofacial measurements
    • 

    corecore