225 research outputs found

    The magnetofection method: Using magnetic force to enhance gene delivery

    Get PDF
    In order to enhance and target gene delivery we have previously established a novel method, termed magnetofection, which uses magnetic force acting on gene vectors that are associated with magnetic particles. Here we review the benefits, the mechanism and the potential of the method with regard to overcoming physical limitations to gene delivery. Magnetic particle chemistry and physics are discussed, followed by a detailed presentation of vector formulation and optimization work. While magnetofection does not necessarily improve the overall performance of any given standard gene transfer method in vitro, its major potential lies in the extraordinarily rapid and efficient transfection at low vector doses and the possibility of remotely controlled vector targeting in vivo

    Theoretical study of the (3x2) reconstruction of beta-SiC(001)

    Full text link
    By means of ab initio molecular dynamics and band structure calculations, as well as using calculated STM images, we have singled out one structural model for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC, amongst several proposed in the literature. This is an alternate dimer-row model, with an excess Si coverage of 1/3, yielding STM images in good accord with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com

    Distributed Caching for Processing Raw Arrays

    Get PDF
    As applications continue to generate multi-dimensional data at exponentially increasing rates, fast analytics to extract meaningful results is becoming extremely important. The database community has developed array databases that alleviate this problem through a series of techniques. In-situ mechanisms provide direct access to raw data in the original format---without loading and partitioning. Parallel processing scales to the largest datasets. In-memory caching reduces latency when the same data are accessed across a workload of queries. However, we are not aware of any work on distributed caching of multi-dimensional raw arrays. In this paper, we introduce a distributed framework for cost-based caching of multi-dimensional arrays in native format. Given a set of files that contain portions of an array and an online query workload, the framework computes an effective caching plan in two stages. First, the plan identifies the cells to be cached locally from each of the input files by continuously refining an evolving R-tree index. In the second stage, an optimal assignment of cells to nodes that collocates dependent cells in order to minimize the overall data transfer is determined. We design cache eviction and placement heuristic algorithms that consider the historical query workload. A thorough experimental evaluation over two real datasets in three file formats confirms the superiority - by as much as two orders of magnitude - of the proposed framework over existing techniques in terms of cache overhead and workload execution time

    Magnetic drug targeting: Preclinical in vivo studies, mathematical modeling, and extrapolation to humans

    Get PDF
    A sound theoretical rationale for the design of a magnetic nanocarrier capable of magnetic capture in vivo after intravenous administration could help elucidate the parameters necessary for in vivo magnetic tumor targeting. In this work, we utilized our long-circulating polymeric magnetic nanocarriers, encapsulating increasing amounts of superparamagnetic iron oxide nanoparticles (SPIONs) in a biocompatible oil carrier, to study the effects of SPION loading and of applied magnetic field strength on magnetic tumor targeting in CT26 tumor-bearing mice. Under controlled conditions, the in vivo magnetic targeting was quantified and found to be directly proportional to SPION loading and magnetic field strength. Highest SPION loading, however, resulted in a reduced blood circulation time and a plateauing of the magnetic targeting. Mathematical modeling was undertaken to compute the in vivo magnetic, viscoelastic, convective, and diffusive forces acting on the nanocapsules (NCs) in accordance with the Nacev–Shapiro construct, and this was then used to extrapolate to the expected behavior in humans. The model predicted that in the latter case, the NCs and magnetic forces applied here would have been sufficient to achieve successful targeting in humans. Lastly, an in vivo murine tumor growth delay study was performed using docetaxel (DTX)-encapsulated NCs. Magnetic targeting was found to offer enhanced therapeutic efficacy and improve mice survival compared to passive targeting at drug doses of ca. 5–8 mg of DTX/kg. This is, to our knowledge, the first study that truly bridges the gap between preclinical experiments and clinical translation in the field of magnetic drug targeting

    Modeling the series of (n x 2) Si-rich reconstructions of beta-SiC(001): a prospective atomic wire?

    Full text link
    We perform ab initio plane wave supercell density functional calculations on three candidate models of the (3 x 2) reconstruction of the beta-SiC(001) surface. We find that the two-adlayer asymmetric-dimer model (TAADM) is unambiguously favored for all reasonable values of Si chemical potential. We then use structures derived from the TAADM parent to model the silicon lines that are observed when the (3 x 2) reconstruction is annealed (the (n x 2) series of reconstructions), using a tight-binding method. We find that as we increase n, and so separate the lines, a structural transition occurs in which the top addimer of the line flattens. We also find that associated with the separation of the lines is a large decrease in the HOMO-LUMO gap, and that the HOMO state becomes quasi-one-dimensional. These properties are qualititatively and quantitatively different from the electronic properties of the original (3 x 2) reconstruction.Comment: 22 pages, including 6 EPS figure

    Anti-de Sitter Quotients: When Are They Black Holes?

    Full text link
    We point out that the BTZ black holes, and their relatives, can be defined in a cleaner way than they originally were. The covering space can be taken to be anti-de Sitter space, period, while scri splits up into components due to Misner singularities. Our definition permits us to choose between two conflicting claims concerning BTZ black holes in 3+1 dimensions.Comment: 16 pages, 4 figures; minor polish adde

    Difficult to control atopic dermatitis

    Get PDF
    Difficult to control atopic dermatitis (AD) presents a therapeutic challenge and often requires combinations of topical and systemic treatment. Anti-inflammatory treatment of severe AD most commonly includes topical glucocorticosteroids and topical calcineurin antagonists used for exacerbation management and more recently for proactive therapy in selected cases. Topical corticosteroids remain the mainstay of therapy, the topical calcineurin inhibitors tacrolimus and pimecrolimus are preferred in certain locations. Systemic anti-inflammatory treatment is an option for severe refractory cases. Microbial colonization and superinfection contribute to disease exacerbation and thus justify additional antimicrobial/antiseptic treatment. Systemic antihistamines (H1) may relieve pruritus but do not have sufficient effect on eczema. Adjuvant therapy includes UV irradiation preferably of UVA1 wavelength. "Eczema school" educational programs have been proven to be helpful

    Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases

    Get PDF
    Therapies directed toward the central nervous system remain difficult to translate into improved clinical outcomes. This is largely due to the blood–brain barrier (BBB), arguably the most tightly regulated interface in the human body, which routinely excludes most therapeutics. Advances in the engineering of nanomaterials and their application in biomedicine (i.e., nanomedicine) are enabling new strategies that have the potential to help improve our understanding and treatment of neurological diseases. Herein, the various mechanisms by which therapeutics can be delivered to the brain are examined and key challenges facing translation of this research from benchtop to bedside are highlighted. Following a contextual overview of the BBB anatomy and physiology in both healthy and diseased states, relevant therapeutic strategies for bypassing and crossing the BBB are discussed. The focus here is especially on nanomaterial‐based drug delivery systems and the potential of these to overcome the biological challenges imposed by the BBB. Finally, disease‐targeting strategies and clearance mechanisms are explored. The objective is to provide the diverse range of researchers active in the field (e.g., material scientists, chemists, engineers, neuroscientists, and clinicians) with an easily accessible guide to the key opportunities and challenges currently facing the nanomaterial‐mediated treatment of neurological diseases

    A rigidity property of asymptotically simple spacetimes arising from conformally flat data

    Full text link
    Given a time symmetric initial data set for the vacuum Einstein field equations which is conformally flat near infinity, it is shown that the solutions to the regular finite initial value problem at spatial infinity extend smoothly through the critical sets where null infinity touches spatial infinity if and only if the initial data coincides with Schwarzschild data near infinity.Comment: 37 page
    corecore