291 research outputs found
Battery-Electric Powertrain System Design for the HorizonUAM Multirotor Air Taxi Concept
The work presented herein has been conducted within the DLR internal research
project HorizonUAM, which encompasses research within numerous areas related to
urban air mobility. One of the project goals was to develop a safe and
certifiable onboard system concept. This paper aims to present the conceptual
propulsion system architecture design for an all-electric battery-powered
multirotor electric Vertical Takeoff and Landing (eVTOL) vehicle. Therefore, a
conceptual design method was developed that provides a structured approach for
designing the safe multirotor propulsion architecture. Based on the concept of
operation the powertrain system was initially predefined, iteratively refined
based on the safety assessment and validated through component sizing and
simulations. The analysis was conducted within three system groups that were
developed in parallel: the drivetrain, the energy supply and the thermal
management system. The design process indicated that a pure quadcopter
propulsion system can merely be designed reasonably for meeting the European
Union Aviation Safety Agency (EASA) reliability specifications. By adding two
push propellers and implementing numerous safety as well as passivation
measures the reliability specifications defined by EASA could finally be
fulfilled. The subsequent system simulations also verified that the system
architecture is capable of meeting the requirements of the vehicle concept of
operations. However, further work is required to extend the safety analysis to
additional system components as the thermal management system or the battery
management system and to reduce propulsion system weight.Comment: 38 pages, 27 figures, CEAS Aeronautical Journal Special Issue
"HorizonUAM - Opportunities and Challenges of Urban Air Mobility
Computational Simulations of Magnetic Particle Capture in Arterial Flows
The aim of Magnetic Drug Targeting (MDT) is to concentrate drugs, attached to magnetic particles, in a specific part of the human body by applying a magnetic field. Computational simulations are performed of blood flow and magnetic particle motion in a left coronary artery and a carotid artery, using the properties of presently available magnetic carriers and strong superconducting magnets (up to B ≈ 2 T). For simple tube geometries it is deduced theoretically that the particle capture efficiency scales as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}, with Mnp the characteristic ratio of the particle magnetization force and the drag force. This relation is found to hold quite well for the carotid artery. For the coronary artery, the presence of side branches and domain curvature causes deviations from this scaling rule, viz. η ∼ Mnpβ, with β > 1/2. The simulations demonstrate that approximately a quarter of the inserted 4 μm particles can be captured from the bloodstream of the left coronary artery, when the magnet is placed at a distance of 4.25 cm. When the same magnet is placed at a distance of 1 cm from a carotid artery, almost all of the inserted 4 μm particles are captured. The performed simulations, therefore, reveal significant potential for the application of MDT to the treatment of atherosclerosis
On de Sitter-like and Minkowski-like space-times
Friedrich's proofs for the global existence results of de Sitter-like
space-times and of semi-global existence of Minkowski-like space-times [Comm.
Math. Phys. \textbf{107}, 587 (1986)] are re-examined and discussed, making use
of the extended conformal field equations and a gauge based on conformal
geodesics. In this gauge the location of the conformal boundary of the
space-times is known \emph{a priori} once the initial data has been prescribed.
Thus it provides an analysis which is conceptually and calculationally simpler.Comment: 24 pages, typos corrected to match published version in CQ
A rigidity property of asymptotically simple spacetimes arising from conformally flat data
Given a time symmetric initial data set for the vacuum Einstein field
equations which is conformally flat near infinity, it is shown that the
solutions to the regular finite initial value problem at spatial infinity
extend smoothly through the critical sets where null infinity touches spatial
infinity if and only if the initial data coincides with Schwarzschild data near
infinity.Comment: 37 page
Theoretical study of the (3x2) reconstruction of beta-SiC(001)
By means of ab initio molecular dynamics and band structure calculations, as
well as using calculated STM images, we have singled out one structural model
for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC,
amongst several proposed in the literature. This is an alternate dimer-row
model, with an excess Si coverage of 1/3, yielding STM images in good accord
with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com
Modeling the series of (n x 2) Si-rich reconstructions of beta-SiC(001): a prospective atomic wire?
We perform ab initio plane wave supercell density functional calculations on
three candidate models of the (3 x 2) reconstruction of the beta-SiC(001)
surface. We find that the two-adlayer asymmetric-dimer model (TAADM) is
unambiguously favored for all reasonable values of Si chemical potential. We
then use structures derived from the TAADM parent to model the silicon lines
that are observed when the (3 x 2) reconstruction is annealed (the (n x 2)
series of reconstructions), using a tight-binding method. We find that as we
increase n, and so separate the lines, a structural transition occurs in which
the top addimer of the line flattens. We also find that associated with the
separation of the lines is a large decrease in the HOMO-LUMO gap, and that the
HOMO state becomes quasi-one-dimensional. These properties are qualititatively
and quantitatively different from the electronic properties of the original (3
x 2) reconstruction.Comment: 22 pages, including 6 EPS figure
Algebraic characteristic classes for idempotent matrices
This paper contains the algebraic analog for idempotent matrices of the Chern-Weil theory of characteristic classes. This is used to show, algebraically, that the canonical line bundle on the complex projective space is not stably trivial. Also a theorem is proved saying that for any smooth manifold there is a canonical epimorphism from the even dimensional algebraic de Rham cohomology of its algebra of smooth functions onto the standard even dimensional de Rham cohomology of the manifold
Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases
Therapies directed toward the central nervous system remain difficult to translate into improved clinical outcomes. This is largely due to the blood–brain barrier (BBB), arguably the most tightly regulated interface in the human body, which routinely excludes most therapeutics. Advances in the engineering of nanomaterials and their application in biomedicine (i.e., nanomedicine) are enabling new strategies that have the potential to help improve our understanding and treatment of neurological diseases. Herein, the various mechanisms by which therapeutics can be delivered to the brain are examined and key challenges facing translation of this research from benchtop to bedside are highlighted. Following a contextual overview of the BBB anatomy and physiology in both healthy and diseased states, relevant therapeutic strategies for bypassing and crossing the BBB are discussed. The focus here is especially on nanomaterial‐based drug delivery systems and the potential of these to overcome the biological challenges imposed by the BBB. Finally, disease‐targeting strategies and clearance mechanisms are explored. The objective is to provide the diverse range of researchers active in the field (e.g., material scientists, chemists, engineers, neuroscientists, and clinicians) with an easily accessible guide to the key opportunities and challenges currently facing the nanomaterial‐mediated treatment of neurological diseases
A first assessment of the impact of the extreme 2018 summer drought on Central European forests
In 2018, Central Europe experienced one of the most severe and long-lasting summer drought and heat wave ever recorded. Before 2018, the 2003 millennial drought was often invoked as the example of a “hotter drought”, and was classified as the most severe event in Europe for the last 500 years. First insights now confirm that the 2018 drought event was climatically more extreme and had a greater impact on forest ecosystems of Austria, Germany and Switzerland than the 2003 drought. Across this region, mean growing season air temperature from April to October was more than 3.3°C above the long-term average, and 1.2°C warmer than in 2003. Here, we present a first impact assessment of the severe 2018 summer drought and heatwave on Central European forests. In response to the 2018 event, most ecologically and economically important tree species in temperate forests of Austria, Germany and Switzerland showed severe signs of drought stress. These symptoms included exceptionally low foliar water potentials crossing the threshold for xylem hydraulic failure in many species and observations of widespread leaf discoloration and premature leaf shedding. As a result of the extreme drought stress, the 2018 event caused unprecedented drought-induced tree mortality in many species throughout the region. Moreover, unexpectedly strong drought-legacy effects were detected in 2019. This implies that the physiological recovery of trees was impaired after the 2018 drought event, leaving them highly vulnerable to secondary drought impacts such as insect or fungal pathogen attacks. As a consequence, mortality of trees triggered by the 2018 events is likely to continue for several years. Our assessment indicates that many common temperate European forest tree species are more vulnerable to extreme summer drought and heat waves than previously thought. As drought and heat events are likely to occur more frequently with the progression of climate change, temperate European forests might approach the point for a substantial ecological and economic transition. Our assessment also highlights the urgent need for a pan-European ground-based monitoring network suited to track individual tree mortality, supported by remote sensing products with high spatial and temporal resolution to track, analyse and forecast these transitions
- …