578 research outputs found

    Coordinated optimization of visual cortical maps : 2. Numerical studies

    Get PDF
    In the juvenile brain, the synaptic architecture of the visual cortex remains in a state of flux for months after the natural onset of vision and the initial emergence of feature selectivity in visual cortical neurons. It is an attractive hypothesis that visual cortical architecture is shaped during this extended period of juvenile plasticity by the coordinated optimization of multiple visual cortical maps such as orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we introduced a class of analytically tractable coordinated optimization models and solved representative examples, in which a spatially complex organization of the OP map is induced by interactions between the maps. We found that these solutions near symmetry breaking threshold predict a highly ordered map layout. Here we examine the time course of the convergence towards attractor states and optima of these models. In particular, we determine the timescales on which map optimization takes place and how these timescales can be compared to those of visual cortical development and plasticity. We also assess whether our models exhibit biologically more realistic, spatially irregular solutions at a finite distance from threshold, when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. We show that, although maps typically undergo substantial rearrangement, no other solutions than pinwheel crystals and stripes dominate in the emerging layouts. Pinwheel crystallization takes place on a rather short timescale and can also occur for detuned wavelengths of different maps. Our numerical results thus support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the architecture of the visual cortex. We discuss several alternative scenarios that may improve the agreement between model solutions and biological observations

    Coordinated optimization of visual cortical maps : 1. Symmetry-based analysis

    Get PDF
    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of orientation columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about a hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference. From basic symmetry assumptions we obtain a comprehensive phenomenological classification of possible inter-map coupling energies and examine representative examples. We show that each individual coupling energy leads to a different class of OP solutions with different correlations among the maps such that inferences about the optimization principle from map layout appear viable. We systematically assess whether quantitative laws resembling experimental observations can result from the coordinated optimization of orientation columns with other feature maps

    Der Bauverein zu Mittweida und der Meißner Bauverein: Die ersten sächsischen Wohnungsbaugenossenschaften ; Beitrag zum genossenschaftlichen und gemeinnützigen Wohnungsbau

    Get PDF
    Die Entwicklung Sachsens im 19. Jh. - Die Geschichte der ersten beiden sächsischen Baugenossenschaften: (1.) in Mittweida und (2.) in Meißen – Die Pioniere des deutschen Genossenschaftswesens: Victor Aimè Huber und Schulze-Delitzsch. - (1.) Die Entwicklung der Industrie in Mittweida und 1873 die Gründung des Bauvereins zu Mittweida - Die drei Wohnbauten des Bauvereins mit Lageplan und alten Bauzeichnungen sowie kritische Untersuchung der Wohnungsgrundrisse. - (2.) Die Entwicklung Meißens zu einer Industriestadt des 19. Jahrhunderts und die Bedeutung ihrer keramischen Industrie. - Zur Gründung des Meißner Bauvereins Jahre 1873 und seiner Baugeschichte. - Die drei genossenschaftlichen Wohnbauten mit Lageplan und alten Bauzeichnungen. Kritische Betrachtung der Wohnungsgrundrisse unter Berücksichtigung des Einbaus von Kachelöfen aus Meißener Produktion. - (3.) Ein Epilog: Das Heizen der Wohnung im 19. Jh. - Verbesserung der Heiz- und Kochtechnik durch den Einsatz von Kachelöfen - Die Kachelproduktion in Meißen und in Velten/Mark. - Zur Gewinnung von Rohbraunkohle und der Brikettierung - Das Braunkohlenbrikett. - Fotografien gusseiserner Öfen und Kachelöfen aus Meißen und Velten/Mark im 19.Jh. Insgesamt 51 Seiten mit 33 Abbildungen

    Pinwheel stabilization by ocular dominance segregation

    Full text link
    We present an analytical approach for studying the coupled development of ocular dominance and orientation preference columns. Using this approach we demonstrate that ocular dominance segregation can induce the stabilization and even the production of pinwheels by their crystallization in two types of periodic lattices. Pinwheel crystallization depends on the overall dominance of one eye over the other, a condition that is fulfilled during early cortical development. Increasing the strength of inter-map coupling induces a transition from pinwheel-free stripe solutions to intermediate and high pinwheel density states.Comment: 10 pages, 4 figure

    Lack of the Sodium-Driven Chloride Bicarbonate Exchanger NCBE Impairs Visual Function in the Mouse Retina

    Get PDF
    Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl-]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function

    Coordinated optimization of visual cortical maps (I) Symmetry-based analysis

    Get PDF
    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of OP columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about an hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference.Comment: 90 pages, 16 figure

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Comparison of different methods in analyzing short-term air pollution effects in a cohort study of susceptible individuals

    Get PDF
    BACKGROUND: Short-term fluctuations of ambient air pollution have been associated with exacerbation of cardiovascular disease. A multi-city study was designed to assess the probability of recurrent hospitalization in a cohort of incident myocardial infarction survivors in five European cities. The objective of this paper is to discuss the methods for analyzing short-term health effects in a cohort study based on a case-series. METHODS: Three methods were considered for the analyses of the cohort data: Poisson regression approach, case-crossover analyses and extended Cox regression analyses. The major challenge of these analyses is to appropriately consider changes within the cohort over time due to changes in the underlying risk following a myocardial infarction, slow time trends in risk factors within the population, dynamic cohort size and seasonal variation. RESULTS: Poisson regression analyses, case-crossover analyses and Extended Cox regression analyses gave similar results. Application of smoothing methods showed the capability to adequately model the complex time trends. CONCLUSION: From a practical point of view, Poisson regression analyses are less time-consuming, and therefore might be used for confounder selection and most of the analyses. However, replication of the results with Cox models is desirable to assure that the results are independent of the analytical approach used. In addition, extended Cox regression analyses would allow a joint estimation of long-term and short-term health effects of time-varying exposures

    Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)

    Get PDF
    Bischof H-J, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N. Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLOS ONE. 2016;11(5): e0154927.The visual wulst is the telencephalic target of the avian thalamofugal visual system. It contains several retinotopically organised representations of the contralateral visual field. We used optical imaging of intrinsic signals, electrophysiological recordings, and retrograde tracing with two fluorescent tracers to evaluate properties of these representations in the zebra finch, a songbird with laterally placed eyes. Our experiments revealed that there is some variability of the neuronal maps between individuals and also concerning the number of detectable maps. It was nonetheless possible to identify three different maps, a posterolateral, a posteromedial, and an anterior one, which were quite constant in their relation to each other. The posterolateral map was in contrast to the two others constantly visible in each successful experiment. The topography of the two other maps was mirrored against that map. Electrophysiological recordings in the anterior and the posterolateral map revealed that all units responded to flashes and to moving bars. Mean directional preferences as well as latencies were different between neurons of the two maps. Tracing experiments confirmed previous reports on the thalamo-wulst connections and showed that the anterior and the posterolateral map receive projections from separate clusters within the thalamic nuclei. Maps are connected to each other by wulst intrinsic projections. Our experiments confirm that the avian visual wulst contains several separate retinotopic maps with both different physiological properties and different thalamo-wulst afferents. This confirms that the functional organization of the visual wulst is very similar to its mammalian equivalent, the visual cortex
    • …
    corecore