23 research outputs found

    Regression models for analyzing radiological visual grading studies – an empirical comparison

    Get PDF
    Background: For optimizing and evaluating image quality in medical imaging, one can use visual grading experiments, where observers rate some aspect of image quality on an ordinal scale. To analyze the grading data, several regression methods are available, and this study aimed at empirically comparing such techniques, in particular when including random effects in the models, which is appropriate for observers and patients. Methods: Data were taken from a previous study where 6 observers graded or ranked in 40 patients the image quality of four imaging protocols, differing in radiation dose and image reconstruction method. The models tested included linear regression, the proportional odds model for ordinal logistic regression, the partial proportional odds model, the stereotype logistic regression model and rank-order logistic regression (for ranking data). In the first two models, random effects as well as fixed effects could be included; in the remaining three, only fixed effects. Results: In general, the goodness of fit (AIC and McFaddens Pseudo R-2) showed small differences between the models with fixed effects only. For the mixed-effects models, higher AIC and lower Pseudo R-2 was obtained, which may be related to the different number of parameters in these models. The estimated potential for dose reduction by new image reconstruction methods varied only slightly between models. Conclusions: The authors suggest that the most suitable approach may be to use ordinal logistic regression, which can handle ordinal data and random effects appropriately

    A joint ventricle and WMH segmentation from MRI for evaluation of healthy and pathological changes in the aging brain

    Get PDF
    Funding Information: This work was supported by the Icelandic Centre for Research (RANNIS, https://en.rannis.is/) through grant 173942-051 (PI:Ellingsen). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There was no additional external funding received for this study. The authors would like to thank Dr. Jerry Prince and Mr. Aaron Carass for providing pre-processed and manually delineated NPH data from Johns Hopkins University. Publisher Copyright: © 2022 Atlason et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Age-related changes in brain structure include atrophy of the brain parenchyma and white matter changes of presumed vascular origin. Enlargement of the ventricles may occur due to atrophy or impaired cerebrospinal fluid (CSF) circulation. The co-occurrence of these changes in neurodegenerative diseases and in aging brains often requires investigators to take both into account when studying the brain, however, automated segmentation of enlarged ventricles and white matter hyperintensities (WMHs) can be a challenging task. Here, we present a hybrid multi-atlas segmentation and convolutional autoencoder approach for joint ventricle parcellation and WMH segmentation from magnetic resonance images (MRIs). Our fully automated approach uses a convolutional autoencoder to generate a standardized image of grey matter, white matter, CSF, and WMHs, which, in conjunction with labels generated by a multi-atlas segmentation approach, is then fed into a convolutional neural network to parcellate the ventricular system. Hence, our approach does not depend on manually delineated training data for new data sets. The segmentation pipeline was validated on both healthy elderly subjects and subjects with normal pressure hydrocephalus using ground truth manual labels and compared with state-of-the-art segmentation methods. We then applied the method to a cohort of 2401 elderly brains to investigate associations of ventricle volume and WMH load with various demographics and clinical biomarkers, using a multiple regression model. Our results indicate that the ventricle volume and WMH load are both highly variable in a cohort of elderly subjects and there is an independent association between the two, which highlights the importance of taking both the possibility of enlarged ventricles and WMHs into account when studying the aging brain.Peer reviewe

    THE FLORA OF SLOVAKIA

    No full text

    A NEW EVOLUTIONARY MILESTONE?

    No full text

    ART THAT IMMORTALIZES FLOWERS

    No full text

    GLOSSARY OF GENETICAL TERMS

    No full text
    corecore