36 research outputs found

    Sulfated glycosaminoglycans inhibit transglutaminase 2 by stabilizing its closed conformation

    Get PDF
    Transglutaminases (TGs) catalyze the covalent crosslinking of proteins via isopeptide bonds. The most prominent isoform, TG2, is associated with physiological processes such as extracellular matrix (ECM) stabilization and plays a crucial role in the pathogenesis of e.g. fibrotic diseases, cancer and celiac disease. Therefore, TG2 represents a pharmacological target of increasing relevance. The glycosaminoglycans (GAG) heparin (HE) and heparan sulfate (HS) constitute high-affinity interaction partners of TG2 in the ECM. Chemically modified GAG are promising molecules for pharmacological applications as their composition and chemical functionalization may be used to tackle the function of ECM molecular systems, which has been recently described for hyaluronan (HA) and chondroitin sulfate (CS). Herein, we investigate the recognition of GAG derivatives by TG2 using an enzyme-crosslinking activity assay in combination with in silico molecular modeling and docking techniques. The study reveals that GAG represent potent inhibitors of TG2 crosslinking activity and offers atom-detailed mechanistic insights

    Tumorassoziierte Matrix-modifizierende Enzyme als Zielstrukturen fĂŒr die molekulare Bildgebung: Entwicklung von Radiotracern fĂŒr Cystein-Cathepsine, Lysyloxidasen und Transglutaminase 2

    Get PDF
    In dieser Arbeit wird ĂŒber die Entwicklung von neuartigen PET-Tracern fĂŒr die In-vivo-Bildgebung von Cystein-Cathepsinen, Lysyloxidasen und Transglutaminase 2 als tumorassoziierte Matrix-modifizierende Enzyme berichtet. Dies beinhaltet im Einzelnen die Identifikation von Leitverbindungen, die Synthese und biochemische Charakterisierung von Analoga, die Etablierung von Methoden fĂŒr deren Radiomarkierung sowie radiopharmakologische Untersuchungen auf molekularer, zellulĂ€rer und organismischer Ebene. In Kapitel 1 dieser Habilitationsschrift wird zunĂ€chst auf die Bedeutung der extrazellulĂ€ren Matrix fĂŒr die Tumorprogression eingegangen, wobei auch der Entwicklungsstatus Matrix-gerichteter Bildgebungssonden gestreift wird. Da die Hemmung der genannten Enzyme ĂŒber die bildgebende funktionelle Diagnostik von Tumoren hinaus großes Potential im Hinblick auf die Pharmakotherapie neoplastischer Erkrankungen aufweist, wurde am Schluss von Kapitel 1 ebenso die generelle Bedeutung der PET- und SPECT-Bildgebung fĂŒr den Prozess der Arzneistoffentwicklung dargelegt, da eine weitere Motivation dieser Arbeit in der Entwicklung von Sonden zur bildgebungsgestĂŒtzten Therapie lag. Im Kapitel 2 wird eine Übersicht ĂŒber strukturelle und funktionelle Aspekte der aufgefĂŒhrten Matrix-modifizierenden Enzyme unter besonderer BerĂŒcksichtigung ihrer jeweiligen Funktion im Tumorgeschehen gegeben. Daran anschließend wird in den Kapiteln 3 und 4 der Stand zur Entwicklung von Inhibitoren bzw. Bildgebungssonden fĂŒr diese Enzyme im Überblick dargestellt. Die Ergebnisse der Arbeit werden im Kapitel 5 prĂ€sentiert, wobei die sich Gliederung dieses Kapitels an den publizierten Arbeiten orientiert, die in diese kumulative Habilitationsschrift Eingang gefunden haben. Es handelt sich dabei im Wesentlichen um eine Kurzdarstellung der veröffentlichten Originalartikel, die durch weiterfĂŒhrende Aspekte ergĂ€nzt wurden, um den Bezug zwischen den einzelnen Arbeiten herzustellen. Kapitel 6 gibt eine kurze Gesamtzusammenfassung der Arbeit, an das Literaturverzeichnis in Kapitel 7 schließt sich mit Kapitel 8 die kumulative Zusammenstellung der zum Thema der Arbeit vom Autor veröffentlichten Zeitschriftenartikel an.:Vorbemerkungen und Zielstellung 1 1. EinfĂŒhrung 3 1.1. Bedeutung der extrazellulĂ€ren Matrix fĂŒr die Tumorprogression 3 1.2. Radiomarkierte Sonden zur Bildgebung der tumorassoziierten extrazellulĂ€ren Matrix 14 1.3. Bedeutung der radiotracerbasierten Bildgebung in der Wirkstoffentwicklung 19 2. Strukturelle und biochemische Aspekte von Matrix-modifizierenden Enzymen: Cystein-Cathepsine, Lysyloxidasen und Transglutaminase 2 24 2.1. Cystein-Cathepsine 24 2.2. Funktionen von Cystein-Cathepsinen in der Tumorprogression 27 2.3. Lysyloxidasen 32 2.4. Funktionen von Lysyloxidasen in der Tumorprogression 36 2.5. Transglutaminase 2 42 2.6. Funktionen der Transglutaminase 2 in der Tumorprogression 46 3. Stand der Entwicklung von Inhibitoren der betrachteten Matrix-modifizierenden Enzyme 50 3.1. Inhibitoren von Cystein-Cathepsinen 50 3.2. Inhibitoren von Lysyloxidasen 61 3.3. Inhibitoren der Transglutaminase 2 64 4. Stand der Entwicklung von Bildgebungssonden fĂŒr die betrachteten Matrix-modifizierenden Enzyme 70 4.1. Sonden fĂŒr Cystein-Cathepsine 70 4.2. Sonden fĂŒr Lysyloxidasen 74 4.3. Sonden fĂŒr die Transglutaminase 2 76 5. Eigene Arbeiten zur Entwicklung von Radiotracern einschließlich der Identifikation, Synthese und Evaluierung geeigneter Liganden zur Bildgebung der vorgestellten Targetklassen 80 5.1. Entwicklung zu Cystein-Cathepsine 80 5.1.1. Auswahl der Leitverbindungen 80 5.1.2. Synthese und radiopharmakologische Charakterisierung eines 18F-markierten Azadipeptidnitrils 81 5.1.3. Synthese und radiopharmakologische Charakterisierung eines 11C-markierten Azadipeptidnitrils 87 5.1.4. Cyanohydrazide als potentielle chemoselektive Markierungsbausteine 91 5.1.5. Zusammenfassung und Ausblick 94 5.2. Lysyloxidasen 95 5.2.1. Auswahl der Leitverbindungen 95 5.2.2. Entwicklung einer Methode zur regioselektiven Markierung von Peptiden mit Fluor-18 97 5.2.3. Synthese und Konformationsanalyse eines N-Telopeptid-abgeleiteten Cyclopeptids 103 5.2.4. Radiopharmakologische Charakterisierung von N-Telopeptid-abgeleiteten Peptiden im Melanom-Xenograft-Mausmodell 109 5.2.5. Radiopharmakologische Charakterisierung eines N-Telopeptid-abgeleiteten Peptides in murinen Mammakarzinommodellen 114 5.2.6. Zusammenfassung und Ausblick 118 5.3. Transglutaminase 2 121 5.3.1. Auswahl der Leitverbindungen 121 5.3.2. Entwicklung von Assaymethoden und Synthese der dafĂŒr benötigten Substratverbindungen 123 5.3.3. Synthese und in-vitro-pharmakologische Charakterisierung von NΔ-Acryloyllysinpiperaziden als irreversible Inhibitoren 137 5.3.4. 18F-Markierung und radiopharmakologische Charakterisierung eines NΔ-Acryloyllysinpiperazids als aktivitĂ€tsbasierte Sonde 152 5.3.5. Zusammenfassung und Ausblick 167 6. Zusammenfassung und Schlussfolgerungen / Summary and Conclusions 171 7. Literaturverzeichnis 177 8. Kumulative Zusammenstellung der publizierten Arbeiten 243 8.1. Veröffentlichte Arbeiten zur Entwicklung Cystein-Cathepsin-gerichteter Radiotracer und Cyanohydraziden als potentielle Markierungsbausteine 243 8.1.1. Übersichtsartikel: “Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes” 243 8.1.2. Originalartikel: “Synthesis and Radiopharmacological Characterisation of a Fluorine-18-Labelled Azadipeptide Nitrile as a Potential PET Tracer for in vivo Imaging of Cysteine Cathepsins” 280 8.1.3. Originalartikel: “Synthesis and Radiopharmacological Characterisation of an 11C‐labelled azadipeptide nitrile as potential PET tracer for imaging of cysteine cathepsins” 304 8.1.4. Originalartikel: “Synthesis and X-ray Crystal Structure of N’-Cyano-N,N’-dimethyl-4-nitrobenzohydrazide” 319 8.2. Veröffentlichte Arbeiten zur Entwicklung Lysyloxidase-gerichteter Radiotracer und zur selektiven 18F-Markierung Lysin-enthaltender Peptide 328 8.2.1. Originalartikel: “Site-selective radiolabeling of peptides by 18F-fluorobenzoylation with [18F]SFB in solution and on solid phase: a comparative study” 328 8.2.2. Originalartikel: “Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide” 350 8.2.3. Originalartikel: “Cyclopeptides containing the DEKS motif as conformationally restricted collagen telopeptide analogues: synthesis and conformational analysis” 388 8.2.4. Originalartikel: “ Evaluation of Fluorine-18-Labeled α1(I)-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase” 428 8.2.5. Originalartikel: “Targeting lysyl oxidase for molecular imaging in breast cancer” 453 8.3. Veröffentlichte Arbeiten zur Entwicklung von TGase 2-gerichteten Radiotracern sowie von Substratverbindungen und Assaymethoden fĂŒr dieses Enzym 470 8.3.1. Übersichtsartikel: “Tissue transglutaminase: An emerging target for therapy and imaging” 470 8.3.2. Originalartikel: ”Synthesis and Kinetic Characterisation of Water‐Soluble Fluorogenic Acyl Donors for Transglutaminase 2“ 487 8.3.3. Originalartikel: “Solution-phase synthesis of the fluorogenic TGase 2 acyl donor Z-Glu(HMC)-Gly-OH and its use for inhibitor and amine substrate characterisation” 543 8.3.4. Originalartikel: “A fluorescence anisotropy-based assay for determining the activity of tissue transglutaminase” 562 8.3.5. Originalartikel: “NΔ-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure–Activity Relationships, and Pharmacokinetic Profiling” 589This work reports on the development of novel PET tracers for in vivo imaging of cysteine cathepsins, lysyl oxidases and transglutaminase 2 as tumour-associated matrix-modifying enzymes. Specifically, this includes the identification of lead compounds, the synthesis and biochemical characterisation of analogues, the establishment of methods for their radiolabelling, and radiopharmacological studies at the molecular, cellular and organismal levels. Chapter 1 of this habilitation thesis first discusses the importance of the extracellular matrix for tumour progression: In addition, the development status of matrix-directed imaging probes is reviewed. Since the inhibition of the aforementioned enzymes has great potential beyond the imaging functional diagnosis of tumours with regard to the pharmacotherapy of neoplastic diseases, the general importance of PET and SPECT imaging for the drug development process was also outlined at the end of chapter 1, since a further motivation of this thesis was provided by the potential use of probes for imaging-assisted therapy. In chapter 2, an overview of structural and functional aspects of the listed matrix-modifying enzymes is given with particular reference to their respective function in tumour processes. This is followed by an overview of the status of the development of inhibitors and imaging probes for these enzymes in chapters 3 and 4. The results of the work are presented in chapter 5, whereby the structure of this chapter is oriented towards the published work that has found its way into this cumulative habilitation thesis. This chapter is essentially a brief presentation of the original published articles, supplemented by further aspects to establish the relationship between the individual papers. Chapter 6 provides a brief overall summary of the thesis, and the bibliography in Chapter 7 is followed by Chapter 8, which provides a cumulative compilation of the journal articles published by the author on the topic of the thesis.:Vorbemerkungen und Zielstellung 1 1. EinfĂŒhrung 3 1.1. Bedeutung der extrazellulĂ€ren Matrix fĂŒr die Tumorprogression 3 1.2. Radiomarkierte Sonden zur Bildgebung der tumorassoziierten extrazellulĂ€ren Matrix 14 1.3. Bedeutung der radiotracerbasierten Bildgebung in der Wirkstoffentwicklung 19 2. Strukturelle und biochemische Aspekte von Matrix-modifizierenden Enzymen: Cystein-Cathepsine, Lysyloxidasen und Transglutaminase 2 24 2.1. Cystein-Cathepsine 24 2.2. Funktionen von Cystein-Cathepsinen in der Tumorprogression 27 2.3. Lysyloxidasen 32 2.4. Funktionen von Lysyloxidasen in der Tumorprogression 36 2.5. Transglutaminase 2 42 2.6. Funktionen der Transglutaminase 2 in der Tumorprogression 46 3. Stand der Entwicklung von Inhibitoren der betrachteten Matrix-modifizierenden Enzyme 50 3.1. Inhibitoren von Cystein-Cathepsinen 50 3.2. Inhibitoren von Lysyloxidasen 61 3.3. Inhibitoren der Transglutaminase 2 64 4. Stand der Entwicklung von Bildgebungssonden fĂŒr die betrachteten Matrix-modifizierenden Enzyme 70 4.1. Sonden fĂŒr Cystein-Cathepsine 70 4.2. Sonden fĂŒr Lysyloxidasen 74 4.3. Sonden fĂŒr die Transglutaminase 2 76 5. Eigene Arbeiten zur Entwicklung von Radiotracern einschließlich der Identifikation, Synthese und Evaluierung geeigneter Liganden zur Bildgebung der vorgestellten Targetklassen 80 5.1. Entwicklung zu Cystein-Cathepsine 80 5.1.1. Auswahl der Leitverbindungen 80 5.1.2. Synthese und radiopharmakologische Charakterisierung eines 18F-markierten Azadipeptidnitrils 81 5.1.3. Synthese und radiopharmakologische Charakterisierung eines 11C-markierten Azadipeptidnitrils 87 5.1.4. Cyanohydrazide als potentielle chemoselektive Markierungsbausteine 91 5.1.5. Zusammenfassung und Ausblick 94 5.2. Lysyloxidasen 95 5.2.1. Auswahl der Leitverbindungen 95 5.2.2. Entwicklung einer Methode zur regioselektiven Markierung von Peptiden mit Fluor-18 97 5.2.3. Synthese und Konformationsanalyse eines N-Telopeptid-abgeleiteten Cyclopeptids 103 5.2.4. Radiopharmakologische Charakterisierung von N-Telopeptid-abgeleiteten Peptiden im Melanom-Xenograft-Mausmodell 109 5.2.5. Radiopharmakologische Charakterisierung eines N-Telopeptid-abgeleiteten Peptides in murinen Mammakarzinommodellen 114 5.2.6. Zusammenfassung und Ausblick 118 5.3. Transglutaminase 2 121 5.3.1. Auswahl der Leitverbindungen 121 5.3.2. Entwicklung von Assaymethoden und Synthese der dafĂŒr benötigten Substratverbindungen 123 5.3.3. Synthese und in-vitro-pharmakologische Charakterisierung von NΔ-Acryloyllysinpiperaziden als irreversible Inhibitoren 137 5.3.4. 18F-Markierung und radiopharmakologische Charakterisierung eines NΔ-Acryloyllysinpiperazids als aktivitĂ€tsbasierte Sonde 152 5.3.5. Zusammenfassung und Ausblick 167 6. Zusammenfassung und Schlussfolgerungen / Summary and Conclusions 171 7. Literaturverzeichnis 177 8. Kumulative Zusammenstellung der publizierten Arbeiten 243 8.1. Veröffentlichte Arbeiten zur Entwicklung Cystein-Cathepsin-gerichteter Radiotracer und Cyanohydraziden als potentielle Markierungsbausteine 243 8.1.1. Übersichtsartikel: “Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes” 243 8.1.2. Originalartikel: “Synthesis and Radiopharmacological Characterisation of a Fluorine-18-Labelled Azadipeptide Nitrile as a Potential PET Tracer for in vivo Imaging of Cysteine Cathepsins” 280 8.1.3. Originalartikel: “Synthesis and Radiopharmacological Characterisation of an 11C‐labelled azadipeptide nitrile as potential PET tracer for imaging of cysteine cathepsins” 304 8.1.4. Originalartikel: “Synthesis and X-ray Crystal Structure of N’-Cyano-N,N’-dimethyl-4-nitrobenzohydrazide” 319 8.2. Veröffentlichte Arbeiten zur Entwicklung Lysyloxidase-gerichteter Radiotracer und zur selektiven 18F-Markierung Lysin-enthaltender Peptide 328 8.2.1. Originalartikel: “Site-selective radiolabeling of peptides by 18F-fluorobenzoylation with [18F]SFB in solution and on solid phase: a comparative study” 328 8.2.2. Originalartikel: “Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide” 350 8.2.3. Originalartikel: “Cyclopeptides containing the DEKS motif as conformationally restricted collagen telopeptide analogues: synthesis and conformational analysis” 388 8.2.4. Originalartikel: “ Evaluation of Fluorine-18-Labeled α1(I)-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase” 428 8.2.5. Originalartikel: “Targeting lysyl oxidase for molecular imaging in breast cancer” 453 8.3. Veröffentlichte Arbeiten zur Entwicklung von TGase 2-gerichteten Radiotracern sowie von Substratverbindungen und Assaymethoden fĂŒr dieses Enzym 470 8.3.1. Übersichtsartikel: “Tissue transglutaminase: An emerging target for therapy and imaging” 470 8.3.2. Originalartikel: ”Synthesis and Kinetic Characterisation of Water‐Soluble Fluorogenic Acyl Donors for Transglutaminase 2“ 487 8.3.3. Originalartikel: “Solution-phase synthesis of the fluorogenic TGase 2 acyl donor Z-Glu(HMC)-Gly-OH and its use for inhibitor and amine substrate characterisation” 543 8.3.4. Originalartikel: “A fluorescence anisotropy-based assay for determining the activity of tissue transglutaminase” 562 8.3.5. Originalartikel: “NΔ-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure–Activity Relationships, and Pharmacokinetic Profiling” 58

    Data files for determination of inhibitory potency of the published compounds at cathepsins B, L , S and K by fluorimetric activity assay

    No full text
    archived files (GraphPad prism) containing raw data (time-resolved fluoresence intensities) and associated data analysis for determination of inhibitory potencie

    Data to 18F-AW09

    No full text
    radio-TLC, radio-HPLC, radio-SDS, in vitro autoradiograph

    NMR data FBz/FBn polyamines

    No full text
    Files of NMR data for the different fluorobenz(o)ylated polyamines and radiosynthesis dat

    Synthesis and X-ray Crystal Structure of N’-Cyano-N,N’-dimethyl-4-nitrobenzohydrazide

    No full text
    Using a two-step procedure, N’-cyano-N,N’-dimethyl-4-nitrobenzohydrazide was synthesized. The structure was established using single crystal X-ray diffraction. It crystalized in the orthorhombic space group P212121 where a = 8.1974(6), b = 10.6696(7), and c = 12.9766(8) Å. The first reported crystal structure of an acyclic cyanohydrazide is discussed with a focus on the geometry of the hydrazide moiety, but intermolecular contacts in the crystal are also considered

    Solid-Phase Synthesis of Selectively Mono-Fluorobenz(o)ylated Polyamines as a Basis for the Development of <sup>18</sup>F-Labeled Radiotracers

    No full text
    Polyamines are highly attractive vectors for tumor targeting, particularly with regards to the development of radiolabeled probes for imaging by positron emission (PET) and single-photon emission computed tomography (SPECT). However, the synthesis of selectively functionalized derivatives remains challenging due to the presence of multiple amino groups of similar reactivity. In this work, we established a synthetic methodology for the selective mono-fluorobenz(o)ylation of various biogenic diamines and polyamines as lead compounds for the perspective development of substrate-based radiotracers for targeting polyamine-specific membrane transporters and enzymes such as transglutaminases. For this purpose, the polyamine scaffold was constructed by solid-phase synthesis of the corresponding oxopolyamines and subsequent reduction with BH3/THF. Primary and secondary amino groups were selectively protected using Dde and Boc as protecting groups, respectively, in orientation to previously reported procedures, which enabled the selective introduction of the reporter groups. For example, N1-FBz-spermidine, N4-FBz-spermidine, N8-FBz-spermidine, and N1-FBz-spermine and N4-FBz-spermine (FBz = 4-fluorobenzoyl) were obtained in good yields by this approach. The advantages and disadvantages of this synthetic approach are discussed in detail and its suitability for radiolabeling was demonstrated for the solid-phase synthesis of N1-[18F]FBz-cadaverine

    Tissue transglutaminase: An emerging target for therapy and imaging

    Get PDF
    AbstractTissue transglutaminase (transglutaminase 2) is a multifunctional enzyme with many interesting properties resulting in versatile roles in both physiology and pathophysiology. Herein, the particular involvement of the enzyme in human diseases will be outlined with special emphasis on its role in cancer and in tissue interactions with biomaterials. Despite recent progress in unraveling the different cellular functions of transglutaminase 2, several questions remain. Transglutaminase 2 features in both confirmed and some still ambiguous roles within pathological conditions, raising interest in developing inhibitors and imaging probes which target this enzyme. One important prerequisite for identifying and characterizing such molecular tools are reliable assay methods to measure the enzymatic activity. This digest Letter will provide clarification about the various assay methods described to date, accompanied by a discussion of recent progress in the development of inhibitors and imaging probes targeting transglutaminase 2
    corecore