132 research outputs found

    Dissolved N:P ratio changes in the eastern tropical North Atlantic: effect on phytoplankton growth and community structure

    Get PDF
    Previous bioassays conducted in the oligotrophic Atlantic Ocean identified availability of inorganic nitrogen (N) as the proximate limiting nutrient control of primary production, but additionally displayed a synergistic growth effect of combined N and phosphorus (P) addition. To classify conditions of nutrient limitation of coastal phytoplankton in the tropical ocean, we performed an 11 d nutrient-enrichment experiment with a natural phytoplankton community from shelf waters off northwest Africa in shipboard mesocosms. We used pigment and gene fingerprinting in combination with flow cytometry for classification and quantification of the taxon-specific photoautotrophic response to differences in nutrient supply. The developing primary bloom was dominated by diatoms and was significantly higher in the treatments receiving initial N addition. The combined supply of N and P did not induce a further increase in phytoplankton abundance compared to high N addition alone. A secondary bloom during the course of the experiment again displayed higher primary producer standing stock in the N-fertilized treatments. Bacterial abundance correlated positively with phytoplankton biomass. Dominance of the photoautotrophic assemblage by N-limited diatoms in conjunction with a probable absence of any P-limited phytoplankton species prevented an additive effect of combined N and P addition on total phytoplankton biomass. Furthermore, after nutrient exhaustion, dinitrogen (N-2)-fixing cyanobacteria succeeded the bloom-forming diatoms. Shelf waters in the tropical eastern Atlantic may thus support growth of diazotrophic cyanobacteria such as Trichodesmium sp. subsequent to upwelling pulses

    Extreme N2O accumulation in the coastal oxygen minimum zone off Peru

    Get PDF
    Depth profiles of nitrous oxide (N2O) were measured during six cruises to the upwelling area and oxygen minimum zone (OMZ) off Peru in 2009 and 2012/2013, covering both the coastal shelf region and the adjacent open ocean. N2O profiles displayed a strong sensitivity towards oxygen concentrations. Open ocean profiles with distances to the shelf break larger than the first baroclinic Rossby radius of deformation showed a transition from a broad maximum close to the Equator to a double-peak structure south of 5° S where the oxygen minimum was more pronounced. Maximum N2O concentrations in the open ocean were about 80 nM. A linear relationship between ΔN2O and apparent oxygen utilization (AOU) could be found for measurements within the upper oxycline, with a slope similar to studies in other oceanic regions. In contrast, N2O profiles close to the shelf revealed a much higher variability, and N2O concentrations higher than 100 nM were often observed. The highest N2O concentration measured at the shelf was â€‰âˆŒâ€‰â€Ż850 nM. Due to the extremely sharp oxygen gradients at the shelf, N2O maxima occurred in very shallow water depths of less than 50 m. In the coastal area, a linear relationship between ΔN2O and AOU could not be observed as extremely high ΔN2O values were scattered over the full range of oxygen concentrations. The data points that showed the strongest deviation from a linear ΔN2O ∕ AOU relationship also showed signals of intense nitrogen loss. These results indicate that the coastal upwelling at the Peruvian coast and the subsequent strong remineralization in the water column causes conditions that lead to extreme N2O accumulation, most likely due to the interplay of intense mixing and high rates of remineralization which lead to a rapid switching of the OMZ waters between anoxic and oxic conditions. This, in turn, could trigger incomplete denitrification or pulses of increased nitrification with extreme N2O production

    Phosphate solubilization and multiple plant growth promoting properties of rhizobacteria isolated from chickpea (Cicer aeritinum L.) producing areas of Ethiopia

    Get PDF
    Chickpea is one of the major legume crops widely grown in Ethiopia. The low availability of phosphorus in soil is among the stresses that constrain the production of this crop in the country. However, there are rhizobacteria capable of solubilizing insoluble forms of phosphorus in soil and make it available to the plant. Thus, this study was aimed at isolation and characterization of phosphate solubilizing bacteria from chickpea rhizosphere. Fifty phosphate solubilizing bacterial strains were isolated from the soil samples, characterized biochemically and identified by 16S rDNA sequences analysis. The results indicate the presence of genera Acinetobacter, Bacillus, Brevibacillus, Burkholderia, Empedobacter, Enterobacter, Pseudomonas, Ralstonia, Sphingomonas and Stenotrophomonas. Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes showed that 44 and 18% of them were capable of producing indole acetic acid and inhibiting the growth of Fusarium oxysporum under in vitro conditions, respectively. A direct impact of several strains (Bacillus flexus (PSBC17), Pseudomonas fluorescence (PSBC33), Enterobacter sp. (PSBC35), Enterobacter sakazaki (PSBC79) and Enterobacter sp. (PSBC81)) on the growth of chickpea in pot culture has been demonstrated by the increase in the number of root nodules, shoot dry matter, nitrogen and phosphorus concentration of shoot. Based on the results, we conclude that chickpea rhizosphere harbor phosphate solubilizing bacteria which are diverse in taxonomy and phosphate solubilizing efficiencies. Thus, consecutive studies should focus on field studies on those strains due to their potentially high importance for the phosphorus nutrition of crops in this area and in this context for the improvement of the sustainability of crop production in the country.Keywords: Plant growth promoting rhizobacteria (PGPR), indole acetic acid (IAA), rhizosphere soil, rock phosphate, bone mea

    No nitrogen fixation in the Bay of Bengal?

    Get PDF
    The Bay of Bengal (BoB) has long stood as a biogeochemical enigma, with subsurface waters containing extremely low, but persistent, concentrations of oxygen in the nanomolar range which – for some, yet unconstrained, reason – are prevented from becoming anoxic. One reason for this may be the low productivity of the BoB waters due to nutrient limitation and the resulting lack of respiration of organic material at intermediate waters. Thus, the parameters determining primary production are key in understanding what prevents the BoB from developing anoxia. Primary productivity in the sunlit surface layers of tropical oceans is mostly limited by the supply of reactive nitrogen through upwelling, riverine flux, atmospheric deposition, and biological dinitrogen (N2) fixation. In the BoB, a stable stratification limits nutrient supply via upwelling in the open waters, and riverine or atmospheric fluxes have been shown to support only less than one-quarter of the nitrogen for primary production. This leaves a large uncertainty for most of the BoB's nitrogen input, suggesting a potential role of N2 fixation in those waters. Here, we present a survey of N2 fixation and carbon fixation in the BoB during the winter monsoon season. We detected a community of N2 fixers comparable to other oxygen minimum zone (OMZ) regions, with only a few cyanobacterial clades and a broad diversity of non-phototrophic N2 fixers present throughout the water column (samples collected between 10 and 560 m water depth). While similar communities of N2 fixers were shown to actively fix N2 in other OMZs, N2 fixation rates were below the detection limit in our samples covering the water column between the deep chlorophyll maximum and the OMZ. Consistent with this, no N2 fixation signal was visible in ή15N signatures. We suggest that the absence of N2 fixation may be a consequence of a micronutrient limitation or of an O2 sensitivity of the OMZ diazotrophs in the BoB. Exploring how the onset of N2 fixation by cyanobacteria compared to non-phototrophic N2 fixers would impact on OMZ O2 concentrations, a simple model exercise was carried out. We observed that both photic-zone-based and OMZ-based N2 fixation are very sensitive to even minimal changes in water column stratification, with stronger mixing increasing organic matter production and export, which can exhaust remaining O2 traces in the BoB

    Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Get PDF
    The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O) that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the water column of the eastern tropical North Atlantic (ETNA) and eastern tropical South Pacific (ETSP) Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen in the ocean

    Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone

    Get PDF
    Benthic nitrogen (N2) fixation and sulfate reduction (SR) were investigated in the Peruvian oxygen minimum zone (OMZ). Sediment samples, retrieved by a multiple corer were taken at six stations (70–1025 m) along a depth transect at 12° S, covering anoxic and hypoxic bottom water conditions. Benthic N2 fixation was detected at all sites, with high rates measured in OMZ mid-waters between the 70 and 253 m and lowest N2 fixation rates below 253 m down to 1025 m water depth. SR rates were decreasing with increasing water depth, with highest rates at the shallow site. Benthic N2 fixation depth profiles largely overlapped with SR depth profiles, suggesting that both processes are coupled. The potential of N2 fixation by SR bacteria was verified by the molecular analysis of nifH genes. Detected nifH sequences clustered with SR bacteria that have been demonstrated to fix N2 in other benthic environments. Depth-integrated rates of N2 fixation and SR showed no direct correlation along the 12° S transect, suggesting that the benthic diazotrophs in the Peruvian OMZ are being controlled by additional various environmental factors. The organic matter availability and the presence of sulfide appear to be major drivers for benthic diazotrophy. It was further found that N2 fixation was not inhibited by high ammonium concentrations. N2 fixation rates in OMZ sediments were similar to rates measured in other organic-rich sediments. Overall, this work improves our knowledge on N sources in marine sediments and contributes to a better understanding of N cycling in OMZ sediments

    Mechanisms of P* Reduction in the Eastern Tropical South Pacific

    Get PDF
    Water masses influenced by oxygen minimum zones (OMZ) feature low inorganic nitrogen (N) to phosphorus (P) ratios. The surplus of P over N is thought to favor non-Redfield primary production by bloom-forming phytoplankton species. Additionally, excess phosphate (P*) is thought to provide a niche for nitrogen fixing organisms. In order to assess the effect of low inorganic nutrient ratios on the stoichiometry and composition of primary producers, biogeochemical measurements were carried out in 2012 during a research cruise in the eastern tropical South Pacific (ETSP). Based on pigment analyses, a succession of different phytoplankton functional groups was observed along onshore—offshore transects with diatoms dominating the productive upwelling region, and prymnesiophytes, cryptophytes, and Synechococcus prevailing in the oligotrophic open ocean. Although inorganic nutrient supply ratios were below Redfield proportions throughout the sampling area, the stoichiometry of particulate organic nitrogen to phosphorus (PON:POP) generally exceeded ratios of 16:1. Despite PON:POP ≄ 16, high P*-values in the surface layer (0–50 m) above the shelf rapidly decreased as water masses were advected offshore. There are three mechanisms which can explain these observations: (1) non-Redfield primary production, where the excess phosphorus in the biomass is directly released as dissolved organic phosphorus (DOP), (2) non-Redfield primary production, which is masked by a particulate organic matter pool mainly consisting of P-depleted detrital biomass, and/or (3) Redfield primary production combined with dinitrogen (N2) fixation. Our observations suggest that the three processes occur simultaneously in the study area; quantifying the relative importance of each of these mechanisms needs further investigation. Therefore, it remains uncertain whether the ETSP is a net sink for bioavailable N or whether the N-deficit in this area is replenished locally

    Benthic Dinitrogen Fixation Traversing the Oxygen Minimum Zone Off Mauritania (NW Africa)

    Get PDF
    Despite its potential to provide new nitrogen (N) to the environment, knowledge on benthic dinitrogen (N2) fixation remains relatively sparse, and its contribution to the marine N budget is regarded as minor. Benthic N2 fixation is often observed in organic-rich sediments coupled to heterotrophic metabolisms, such as sulfate reduction. In the present study, benthic N2 fixation together with sulfate reduction and other heterotrophic metabolisms were investigated at six station between 47 and 1,108 m water depth along the 18°N transect traversing the highly productive upwelling region known as Mauritanian oxygen minimum zone (OMZ). Bottom water oxygen concentrations ranged between 30 and 138 ÎŒM. Benthic N2 fixation determined by the acetylene reduction assay was detected at all stations with highest rates (0.15 mmol m−2 d−1) on the shelf (47 and 90 m water depth) and lowest rates (0.08 mmol m−2 d−1) below 412 m water depth. The biogeochemical data suggest that part of the N2 fixation could be linked to sulfate- and iron-reducing bacteria. Molecular analysis of the key functional marker gene for N2 fixation, nifH, confirmed the presence of sulfate- and iron-reducing diazotrophs. High N2 fixation further coincided with bioirrigation activity caused by burrowing macrofauna, both of which showed high rates at the shelf sites and low rates in deeper waters. However, statistical analyses proved that none of these processes and environmental variables were significantly correlated with benthic diazotrophy, which lead to the conclusion that either the key parameter controlling benthic N2 fixation in Mauritanian sediments remains unidentified or that a more complex interaction of control mechanisms exists. N2 fixation rates in Mauritanian sediments were 2.7 times lower than those from the anoxic Peruvian OMZ

    Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific

    Get PDF
    Recent observations in the eastern tropical South Pacific (ETSP) have shown the key role of meso- and submesoscale processes (e.g. eddies) in shaping its hydrographic and biogeochemical properties. Off Peru, elevated primary production from coastal upwelling in combination with sluggish ventilation of subsurface waters fuels a prominent oxygen minimum zone (OMZ). Given that nitrous oxide (N2O) production–consumption processes in the water column are sensitive to oxygen (O2) concentrations, the ETSP is a region of particular interest to investigate its source–sink dynamics. To date, no detailed surveys linking mesoscale processes and N2O distributions as well as their relevance to nitrogen (N) cycling are available. In this study, we present the first measurements of N2O across three mesoscale eddies (two mode water or anticyclonic and one cyclonic) which were identified, tracked, and sampled during two surveys carried out in the ETSP in November–December 2012. A two-peak structure was observed for N2O, wherein the two maxima coincide with the upper and lower boundaries of the OMZ, indicating active nitrification and partial denitrification. This was further supported by the abundances of the key gene for nitrification, ammonium monooxygenase (amoA), and the gene marker for N2O production during denitrification, nitrite reductase (nirS). Conversely, we found strong N2O depletion in the core of the OMZ (O2 < 5 ÎŒmol/L) to be consistent with nitrite (NO2-) accumulation and low levels of nitrate (NO3-), thus suggesting active denitrification. N2O depletion within the OMZ’s core was substantially higher in the centre of mode water eddies, supporting the view that eddy activity enhances N-loss processes off Peru, in particular near the shelf break where nutrient-rich, productive waters from upwelling are trapped before being transported offshore. Analysis of eddies during their propagation towards the open ocean showed that, in general, “ageing” of mesoscale eddies tends to decrease N2O concentrations through the water column in response to the reduced supply of material to fuel N loss, although the hydrographic variability might also significantly impact the pace of the production–consumption pathways for N2O. Our results evidence the relevance of mode water eddies for N2O distribution, thereby improving our understanding of the N-cycling processes, which are of crucial importance in times of climate change and ocean deoxygenation
    • 

    corecore