288 research outputs found

    Protein/lipid interactions in phospholipid monolayers containing the bacterial antenna protein B800-850

    Get PDF
    Studies on monomolecular layers of phospholipids containing the antenna protein B800-850 (LHCP) and in some cases additionally the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides are reported. Information on monolayer preparation as well as on protein /lipid and protein/protein interaction is obtained by means of fluorescence spectroscopy and microscopy at the air/water interface in combination with film balance experiments. It is shown that a homogeneous distribution of functional proteins can be achieved. This can be transformed into a regular pattern-like distribution by inducing a phospholipid phase transition. Although the LHCP preferentially partitions into the fluid lipid phase, it decreases the lateral pressure necessary to crystallize the lipid. This is probably due to an increase in order of the fluid phase. A pressure-induced conformation change of the LHCP is detected via a drastic change in fluorescence yield. A highly efficient energy transfer from LHCP to the reaction center is observed. This proves the quantitative reconstitution of both types of proteins and indicates protein aggregation also in the monolayer

    Two-dimensional shear modulus of a Langmuir foam

    Full text link
    We deform a two-dimensional (2D) foam, created in a Langmuir monolayer, by applying a mechanical perturbation, and simultaneously image it by Brewster angle microscopy. We determine the foam stress tensor (through a determination of the 2D gas-liquid line tension, 2.35 ±\pm 0.4 pJ\cdotm1^{-1}) and the statistical strain tensor, by analyzing the images of the deformed structure. We deduce the 2D shear modulus of the foam, μ=38±3nNm1\mu= 38 \pm 3 \mathrm{nN}\cdot \mathrm{m}^{-1}. The foam effective rigidity is predicted to be 35±3nNm1 35 \pm 3 \mathrm {nN}\cdot \mathrm {m}^{- 1}, which agrees with the value 37.5±0.8nNm137.5 \pm 0.8 \mathrm {nN}\cdot \mathrm {m}^{-1} obtained in an independent mechanical measurement.Comment: submitted May 12, 2003 ; resubmitted Sept 9, 200

    Two-dimensional flow of foam around an obstacle: force measurements

    Full text link
    A Stokes experiment for foams is proposed. It consists in a two-dimensional flow of a foam, confined between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measurements of the drag exerted by the flowing foam on the obstacle, \emph{versus} various separately controlled parameters: flow rate, bubble volume, bulk viscosity, obstacle size, shape and boundary conditions. We separate the drag into two contributions, an elastic one (yield drag) at vanishing flow rate, and a fluid one (viscous coefficient) increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit in particular a power-law dependence of the drag as a function of the bulk viscosity and the flow rate with two different exponents. Moreover, we show that the drag decreases with bubble size, and increases proportionally to the obstacle size. We quantify the effect of shape through a dimensioned drag coefficient, and we show that the effect of boundary conditions is small.Comment: 26 pages, 13 figures, resubmitted version to Phys. Rev.

    ESR, ENDOR and TRIPLE resonance studies of the primary donor radical cation P960+ in the photosynthetic bacterium Rhodopseudomonas viridis

    Get PDF
    The light-induced radical cation of the primary electron donor P960+• in photosynthetic reaction centers from Rhodopseudomonas viridis has been investigated by ESR, ENDOR and TRIPLE techniques. Both the comparison with the cation radical of monomeric bacteriochlorophyll b (BChl b) and with molecular-orbital calculations performed on P960+• using the results of an X-ray structure analysis, consistently show an asymmetric distribution of the unpaired electron over the two BChl b molecules which constitute P960+•. The possible relevance of this result for the primary electron transfer step in the reaction center is briefly discussed

    Ferromagnetism in Oriented Graphite Samples

    Full text link
    We have studied the magnetization of various, well characterized samples of highly oriented pyrolitic graphite (HOPG), Kish graphite and natural graphite to investigate the recently reported ferromagnetic-like signal and its possible relation to ferromagnetic impurities. The magnetization results obtained for HOPG samples for applied fields parallel to the graphene layers - to minimize the diamagnetic background - show no correlation with the magnetic impurity concentration. Our overall results suggest an intrinsic origin for the ferromagnetism found in graphite. We discuss possible origins of the ferromagnetic signal.Comment: 11 figure

    Membrane Association of the PTEN Tumor Suppressor: Molecular Details of the Protein-Membrane Complex from SPR Binding Studies and Neutron Reflection

    Get PDF
    The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P2 were determined to be Kd∼12 µM and 0.4 µM, respectively, and Kd∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P2 and an increased apparent affinity to PI(3,4,5)P3, due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P2 and no synergy in its binding with PS and PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase “scoots" along the membrane surface (penetration <5 Å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains, as suggested by the crystal structure. The regulatory C-terminal tail is most likely displaced from the membrane and organized on the far side of the protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN
    corecore