55 research outputs found
Transforming structures by set interpretations
We consider a new kind of interpretation over relational structures: finite
sets interpretations. Those interpretations are defined by weak monadic
second-order (WMSO) formulas with free set variables. They transform a given
structure into a structure with a domain consisting of finite sets of elements
of the orignal structure. The definition of these interpretations directly
implies that they send structures with a decidable WMSO theory to structures
with a decidable first-order theory. In this paper, we investigate the
expressive power of such interpretations applied to infinite deterministic
trees. The results can be used in the study of automatic and tree-automatic
structures.Comment: 36 page
Guarded Second-Order Logic, Spanning Trees, and Network Flows
According to a theorem of Courcelle monadic second-order logic and guarded
second-order logic (where one can also quantify over sets of edges) have the
same expressive power over the class of all countable -sparse hypergraphs.
In the first part of the present paper we extend this result to hypergraphs of
arbitrary cardinality. In the second part, we present a generalisation dealing
with methods to encode sets of vertices by single vertices
Separation of Test-Free Propositional Dynamic Logics over Context-Free Languages
For a class L of languages let PDL[L] be an extension of Propositional
Dynamic Logic which allows programs to be in a language of L rather than just
to be regular. If L contains a non-regular language, PDL[L] can express
non-regular properties, in contrast to pure PDL.
For regular, visibly pushdown and deterministic context-free languages, the
separation of the respective PDLs can be proven by automata-theoretic
techniques. However, these techniques introduce non-determinism on the automata
side. As non-determinism is also the difference between DCFL and CFL, these
techniques seem to be inappropriate to separate PDL[DCFL] from PDL[CFL].
Nevertheless, this separation is shown but for programs without test operators.Comment: In Proceedings GandALF 2011, arXiv:1106.081
Formats of Winning Strategies for Six Types of Pushdown Games
The solution of parity games over pushdown graphs (Walukiewicz '96) was the
first step towards an effective theory of infinite-state games. It was shown
that winning strategies for pushdown games can be implemented again as pushdown
automata. We continue this study and investigate the connection between game
presentations and winning strategies in altogether six cases of game arenas,
among them realtime pushdown systems, visibly pushdown systems, and counter
systems. In four cases we show by a uniform proof method that we obtain
strategies implementable by the same type of pushdown machine as given in the
game arena. We prove that for the two remaining cases this correspondence
fails. In the conclusion we address the question of an abstract criterion that
explains the results
Memory Reduction via Delayed Simulation
We address a central (and classical) issue in the theory of infinite games:
the reduction of the memory size that is needed to implement winning strategies
in regular infinite games (i.e., controllers that ensure correct behavior
against actions of the environment, when the specification is a regular
omega-language). We propose an approach which attacks this problem before the
construction of a strategy, by first reducing the game graph that is obtained
from the specification. For the cases of specifications represented by
"request-response"-requirements and general "fairness" conditions, we show that
an exponential gain in the size of memory is possible.Comment: In Proceedings iWIGP 2011, arXiv:1102.374
Good-for-games ω-Pushdown Automata
We introduce good-for-games -pushdown automata (-GFG-PDA).
These are automata whose nondeterminism can be resolved based on the input
processed so far. Good-for-gameness enables automata to be composed with games,
trees, and other automata, applications which otherwise require deterministic
automata. Our main results are that -GFG-PDA are more expressive than
deterministic - pushdown automata and that solving infinite games with
winning conditions specified by -GFG-PDA is EXPTIME-complete. Thus, we
have identified a new class of -contextfree winning conditions for
which solving games is decidable. It follows that the universality problem for
-GFG-PDA is in EXPTIME as well. Moreover, we study closure properties
of the class of languages recognized by -GFG- PDA and decidability of
good-for-gameness of -pushdown automata and languages. Finally, we
compare -GFG-PDA to -visibly PDA, study the resources necessary
to resolve the nondeterminism in -GFG-PDA, and prove that the parity
index hierarchy for -GFG-PDA is infinite.
This is a corrected version of the paper arXiv:2001.04392v6 published
originally on January 7, 2022
Invariant Synthesis for Incomplete Verification Engines
We propose a framework for synthesizing inductive invariants for incomplete
verification engines, which soundly reduce logical problems in undecidable
theories to decidable theories. Our framework is based on the counter-example
guided inductive synthesis principle (CEGIS) and allows verification engines to
communicate non-provability information to guide invariant synthesis. We show
precisely how the verification engine can compute such non-provability
information and how to build effective learning algorithms when invariants are
expressed as Boolean combinations of a fixed set of predicates. Moreover, we
evaluate our framework in two verification settings, one in which verification
engines need to handle quantified formulas and one in which verification
engines have to reason about heap properties expressed in an expressive but
undecidable separation logic. Our experiments show that our invariant synthesis
framework based on non-provability information can both effectively synthesize
inductive invariants and adequately strengthen contracts across a large suite
of programs
Politik mit dem Einkaufswagen : Unternehmen und Konsumenten als BĂĽrger in der globalen Mediengesellschaft
Forschungsprojekt gefördert durch die DFGEine gegenseitige Durchdringung von Zivilgesellschaft und Markt manifestiert sich in der Politisierung des Konsums und der Selbstinszenierung von Unternehmen als sozial verantwortliche Bürger. Dies wirft grundlegende Fragen zur Neubestimmung von Bürgerschaftskonzepten und zur Erweiterung des Handlungsrepertoires von Protestakteuren in spätmodernen Konsumgesellschaften auf. Dabei fungieren (neue) Medien sowohl als Vermittler unternehmerischen Engagements als auch als Plattform für die Ausbildung neuer Protestformen. Der Band liefert einen Beitrag zur aktuellen Diskussion und versammelt Perspektiven von Wissenschaftlern und Praktikern
The Non-Deterministic Mostowski Hierarchy and Distance-Parity Automata
Abstract. Given a Rabin tree-language and natural numbers i, j, the language is said to be i, j-feasible if it is accepted by a parity automaton using priorities {i, i+1,..., j}. The i, j-feasibility induces a hierarchy over the Rabin-tree languages called the Mostowski hierarchy. In this paper we prove that the problem of deciding if a language is i, j-feasible is reducible to the uniform universality problem for distanceparity automata. Distance-parity automata form a new model of automata extending both the nested distance desert automata introduced by Kirsten in his proof of decidability of the star-height problem, and parity automata over infinite trees. Distance-parity automata, instead of accepting a language, attach to each tree a cost in ω + 1. The uniform universality problem consists in determining if this cost function is bounded by a finite value.
Transforming structures by set interpretations
We consider a new kind of interpretation over relational structures: finite
sets interpretations. Those interpretations are defined by weak monadic
second-order (WMSO) formulas with free set variables. They transform a given
structure into a structure with a domain consisting of finite sets of elements
of the orignal structure. The definition of these interpretations directly
implies that they send structures with a decidable WMSO theory to structures
with a decidable first-order theory. In this paper, we investigate the
expressive power of such interpretations applied to infinite deterministic
trees. The results can be used in the study of automatic and tree-automatic
structures
- …