55 research outputs found

    Transforming structures by set interpretations

    Get PDF
    We consider a new kind of interpretation over relational structures: finite sets interpretations. Those interpretations are defined by weak monadic second-order (WMSO) formulas with free set variables. They transform a given structure into a structure with a domain consisting of finite sets of elements of the orignal structure. The definition of these interpretations directly implies that they send structures with a decidable WMSO theory to structures with a decidable first-order theory. In this paper, we investigate the expressive power of such interpretations applied to infinite deterministic trees. The results can be used in the study of automatic and tree-automatic structures.Comment: 36 page

    Guarded Second-Order Logic, Spanning Trees, and Network Flows

    Full text link
    According to a theorem of Courcelle monadic second-order logic and guarded second-order logic (where one can also quantify over sets of edges) have the same expressive power over the class of all countable kk-sparse hypergraphs. In the first part of the present paper we extend this result to hypergraphs of arbitrary cardinality. In the second part, we present a generalisation dealing with methods to encode sets of vertices by single vertices

    Separation of Test-Free Propositional Dynamic Logics over Context-Free Languages

    Full text link
    For a class L of languages let PDL[L] be an extension of Propositional Dynamic Logic which allows programs to be in a language of L rather than just to be regular. If L contains a non-regular language, PDL[L] can express non-regular properties, in contrast to pure PDL. For regular, visibly pushdown and deterministic context-free languages, the separation of the respective PDLs can be proven by automata-theoretic techniques. However, these techniques introduce non-determinism on the automata side. As non-determinism is also the difference between DCFL and CFL, these techniques seem to be inappropriate to separate PDL[DCFL] from PDL[CFL]. Nevertheless, this separation is shown but for programs without test operators.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Formats of Winning Strategies for Six Types of Pushdown Games

    Full text link
    The solution of parity games over pushdown graphs (Walukiewicz '96) was the first step towards an effective theory of infinite-state games. It was shown that winning strategies for pushdown games can be implemented again as pushdown automata. We continue this study and investigate the connection between game presentations and winning strategies in altogether six cases of game arenas, among them realtime pushdown systems, visibly pushdown systems, and counter systems. In four cases we show by a uniform proof method that we obtain strategies implementable by the same type of pushdown machine as given in the game arena. We prove that for the two remaining cases this correspondence fails. In the conclusion we address the question of an abstract criterion that explains the results

    Memory Reduction via Delayed Simulation

    Full text link
    We address a central (and classical) issue in the theory of infinite games: the reduction of the memory size that is needed to implement winning strategies in regular infinite games (i.e., controllers that ensure correct behavior against actions of the environment, when the specification is a regular omega-language). We propose an approach which attacks this problem before the construction of a strategy, by first reducing the game graph that is obtained from the specification. For the cases of specifications represented by "request-response"-requirements and general "fairness" conditions, we show that an exponential gain in the size of memory is possible.Comment: In Proceedings iWIGP 2011, arXiv:1102.374

    Good-for-games ω-Pushdown Automata

    Get PDF
    We introduce good-for-games ω\omega-pushdown automata (ω\omega-GFG-PDA). These are automata whose nondeterminism can be resolved based on the input processed so far. Good-for-gameness enables automata to be composed with games, trees, and other automata, applications which otherwise require deterministic automata. Our main results are that ω\omega-GFG-PDA are more expressive than deterministic ω\omega- pushdown automata and that solving infinite games with winning conditions specified by ω\omega-GFG-PDA is EXPTIME-complete. Thus, we have identified a new class of ω\omega-contextfree winning conditions for which solving games is decidable. It follows that the universality problem for ω\omega-GFG-PDA is in EXPTIME as well. Moreover, we study closure properties of the class of languages recognized by ω\omega-GFG- PDA and decidability of good-for-gameness of ω\omega-pushdown automata and languages. Finally, we compare ω\omega-GFG-PDA to ω\omega-visibly PDA, study the resources necessary to resolve the nondeterminism in ω\omega-GFG-PDA, and prove that the parity index hierarchy for ω\omega-GFG-PDA is infinite. This is a corrected version of the paper arXiv:2001.04392v6 published originally on January 7, 2022

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    Politik mit dem Einkaufswagen : Unternehmen und Konsumenten als BĂĽrger in der globalen Mediengesellschaft

    Get PDF
    Forschungsprojekt gefördert durch die DFGEine gegenseitige Durchdringung von Zivilgesellschaft und Markt manifestiert sich in der Politisierung des Konsums und der Selbstinszenierung von Unternehmen als sozial verantwortliche Bürger. Dies wirft grundlegende Fragen zur Neubestimmung von Bürgerschaftskonzepten und zur Erweiterung des Handlungsrepertoires von Protestakteuren in spätmodernen Konsumgesellschaften auf. Dabei fungieren (neue) Medien sowohl als Vermittler unternehmerischen Engagements als auch als Plattform für die Ausbildung neuer Protestformen. Der Band liefert einen Beitrag zur aktuellen Diskussion und versammelt Perspektiven von Wissenschaftlern und Praktikern

    The Non-Deterministic Mostowski Hierarchy and Distance-Parity Automata

    No full text
    Abstract. Given a Rabin tree-language and natural numbers i, j, the language is said to be i, j-feasible if it is accepted by a parity automaton using priorities {i, i+1,..., j}. The i, j-feasibility induces a hierarchy over the Rabin-tree languages called the Mostowski hierarchy. In this paper we prove that the problem of deciding if a language is i, j-feasible is reducible to the uniform universality problem for distanceparity automata. Distance-parity automata form a new model of automata extending both the nested distance desert automata introduced by Kirsten in his proof of decidability of the star-height problem, and parity automata over infinite trees. Distance-parity automata, instead of accepting a language, attach to each tree a cost in ω + 1. The uniform universality problem consists in determining if this cost function is bounded by a finite value.

    Transforming structures by set interpretations

    No full text
    We consider a new kind of interpretation over relational structures: finite sets interpretations. Those interpretations are defined by weak monadic second-order (WMSO) formulas with free set variables. They transform a given structure into a structure with a domain consisting of finite sets of elements of the orignal structure. The definition of these interpretations directly implies that they send structures with a decidable WMSO theory to structures with a decidable first-order theory. In this paper, we investigate the expressive power of such interpretations applied to infinite deterministic trees. The results can be used in the study of automatic and tree-automatic structures
    • …
    corecore