112 research outputs found
A Diagnostic Algorithm for Posterior Fossa Tumors in Children: A Validation Study
BACKGROUND AND PURPOSE: Primary posterior fossa tumors comprise a large group of neoplasias with variable aggressiveness and short and long-term outcomes. This study aimed to validate the clinical usefulness of a radiologic decision flow chart based on previously published neuroradiologic knowledge for the diagnosis of posterior fossa tumors in children. MATERIALS AND METHODS: A retrospective study was conducted (from January 2013 to October 2019) at 2 pediatric referral centers, Children's Hospital of Philadelphia, United States, and Great Ormond Street Hospital, United Kingdom. Inclusion criteria were younger than 18 years of age and histologically and molecularly confirmed posterior fossa tumors. Subjects with no available preoperative MR imaging and tumors located primarily in the brain stem were excluded. Imaging characteristics of the tumors were evaluated following a predesigned, step-by-step flow chart. Agreement between readers was tested with the Cohen κ, and each diagnosis was analyzed for accuracy. RESULTS: A total of 148 cases were included, with a median age of 3.4 years (interquartile range, 2.1-6.1 years), and a male/female ratio of 1.24. The predesigned flow chart facilitated identification of pilocytic astrocytoma, ependymoma, and medulloblastoma sonic hedgehog tumors with high sensitivity and specificity. On the basis of the results, the flow chart was adjusted so that it would also be able to better discriminate atypical teratoid/rhabdoid tumors and medulloblastoma groups 3 or 4 (sensitivity = 75%-79%; specificity = 92%-99%). Moreover, our adjusted flow chart was useful in ruling out ependymoma, pilocytic astrocytomas, and medulloblastoma sonic hedgehog tumors. CONCLUSIONS: The modified flow chart offers a structured tool to aid in the adjunct diagnosis of pediatric posterior fossa tumors. Our results also establish a useful starting point for prospective clinical studies and for the development of automated algorithms, which may provide precise and adequate diagnostic tools for these tumors in clinical practice
Database Species-Area Relationships in Palaearctic Grasslands.
The database collects the data resulting from the sampling of species-area relationships (SARs) in grassland communities in the
Palaearctic. The core features of the database are the complete data from the EDGG Research Expeditions, but similar data from other studies
are also included. Main features of the majority of relevés are: (i) they are part of nested-plot series (typically 0.0001-100 m²), (ii) bryophytes and
lichens are treated comprehensively; (iii) detailed soil and other environmental data
Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests
The effect of management related factors on species richness of epiphytic
bryophytes and lichens was studied in managed deciduous-coniferous mixed
forests in Western-Hungary. At the stand level, the potential explanatory
variables were tree species composition, stand structure, microclimate and
light conditions, landscape and historical variables; while at tree level host
tree species, tree size and light were studied. Species richness of the two
epiphyte groups was positively correlated. Both for lichen and bryophyte plot
level richness, the composition and diversity of tree species and the abundance of shrub layer were the most influential positive factors. Besides, for
bryophytes the presence of large trees, while for lichens amount and
heterogeneity of light were important. Tree level richness was mainly
determined by host tree species for both groups. For bryophytes oaks, while for lichens oaks and hornbeam turned out the most favourable hosts. Tree size
generally increased tree level species richness, except on pine for bryophytes
and on hornbeam for lichens.
The key variables for epiphytic diversity of the region were directly
influenced by recent forest management; historical and landscape variables
were not influential. Forest management oriented to the conservation of
epiphyte s should focus on: (i) the maintenance of tree species diversity in
mixed stands; (ii) increment the proportion of deciduous trees (mainly oaks);
(iii) conserving large trees within the stands; (iv) providing the presence of
shrub and regeneration layer; (v) creating heterogeneous light conditions. For
these purposes tree selection and selective cutting management seem more
appropriate than shelterwood system
GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands
Abstract: GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto- coenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems
Plant trait-mediated drag forces on seedlings of four tidal marsh pioneer species
Salt marshes play an important role in coastal protection by reducing the impact of waves and shoreline erosion risks. While mature vegetation is responsible for the persistence and stability of marsh ecosystems, seedling survival of pioneer species is especially crucial for marsh propagation. Marsh seedlings, however, may be threatened by climate change induced increased coastal storm surge intensity and accompanying (extreme) wave conditions, imposing stronger drag forces on marsh seedlings. We test the hypothesis that drag forces experienced by seedlings increase with horizontal orbital velocity (Uw) in a species-specific manner, and that the drag forces experienced are individual-plant trait-mediated. To test our hypotheses, seedlings of four contrasting pioneer marsh species (Bolboschoenus maritimus, Schoenoplectus tabernaemontani, Spartina anglica, and Puccinellia maritima) were exposed to storm wave conditions in a flume, where Uw and experienced drag forces were measured. Linear mixed effect models demonstrated that seedling’s susceptibility to storm wave conditions is at least partly mediated by individual plant traits. Drag forces experienced by seedlings tended to increase with Uw, and with stem length and diameter. The interplay of both traits was complex, with increasing stem length being the most important trait accounting for increases in drag forces experienced at low to moderate Uw, while the stem diameter became more important with increasing Uw. Furthermore, experienced drag forces appeared to be affected by species-specific traits such as rigidity and leaf growth, being highest for Bolboschoenus maritimus and lowest for Puccinellia maritima. Our results provide important mechanistic insights into the drivers of tidal marsh seedling vulnerability to storm wave conditions due to experienced drag, both based on the traits of individual plants and species-specific ones. This type of knowledge is of key importance when modelling saltmarsh establishment and resilience under climate change
Development of Secondary Woodland in Oak Wood Pastures Reduces the Richness of Rare Epiphytic Lichens
Wooded pastures with ancient trees were formerly abundant throughout Europe, but during the last century, grazing has largely been abandoned often resulting in dense forests. Ancient trees constitute habitat for many declining and threatened species, but the effects of secondary woodland on the biodiversity associated with these trees are largely unknown. We tested for difference in species richness, occurrence, and abundance of a set of nationally and regionally red-listed epiphytic lichens between ancient oaks located in secondary woodland and ancient oaks located in open conditions. We refined the test of the effect of secondary woodland by also including other explanatory variables. Species occurrence and abundance were modelled jointly using overdispersed zero-inflated Poisson models. The richness of the red-listed lichens on ancient oaks in secondary woodland was half of that compared with oaks growing in open conditions. The species-level analyses revealed that this was mainly the result of lower occupancy of two of the study species. The tree-level abundance of one species was also lower in secondary woodland. Potential explanations for this pattern are that the study lichens are adapted to desiccating conditions enhancing their population persistence by low competition or that open, windy conditions enhance their colonisation rate. This means that the development of secondary woodland is a threat to red-listed epiphytic lichens. We therefore suggest that woody vegetation is cleared and grazing resumed in abandoned oak pastures. Importantly, this will also benefit the vitality of the oaks
- …