60 research outputs found

    Coastal police of Vigo; A quasi-experimental pilot study about rescue and CPR

    Full text link
    El ahogamiento es una de las principales causas de muerte en el mundo y en España. Los socorristas ejercen una labor de prevención y vigilancia pero su labor es estacional y temporal. En muchos lugares, la primera respuesta a la emergencia, cuando los socorristas no están de servicio, depende de la policía, a la que se le requiere habilidades de rescate y reanimación cardiopulmonar (RCP). El objetivo de este estudio es determinar la capacidad de rescate y efecto de la fatiga sobre la calidad de la RCP de un grupo de diez policías costeros cuya área de influencia es el litoral de Vigo. El diseño fue cuasi-experimental con dos factores (pretest basal/postest rescate). Los policías pudieron realizar el rescate acuático rápido y seguro 417 ± 54,5 seg, a nivel de lactacidema se registró 12,27 ± 2,36 mmol. La fatiga inducida por el rescate afectó negativamente a la calidad de la compresiones en la RCP (p = 0,002)Drowning is a leading cause of death worldwide and in Spain. Lifeguards exert vigilance and prevention efforts but their work is seasonal and temporary. In many places the first emergency response when lifeguards are not on duty, depends on the police, which are required rescue skills and cardiopulmonary resuscitation (CPR). The objective of this study is to determine the ability of lifesaving and effect of fatigue on the quality of CPR of a group of ten coastal police whose area of influence is the coast of Vigo. The design was quasiexperimental with two factors (basal pretest / posttest rescue). Cops with basic training could perform fast and safe water rescue 417 ± 54.5 seconds, lactate level was recorded 12.27 ± 2.36 mmol. Induced fatigue during resuce effort had a nevative effect on the quality of compressions in CPR (p = 0.002

    CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves

    Get PDF
    Inflammation is a common neuropathological feature in several neurological disorders, including amyotrophic lateral sclerosis (ALS). We have studied the contribution of CSF1R signalling to inflammation in ALS, as a pathway previously reported to control the expansion and activation of microglial cells. We found that microglial cell proliferation in the spinal cord of SOD1G93A transgenic mice correlates with the expression of CSF1R and its ligand CSF1. Administration of GW2580, a selective CSF1R inhibitor, reduced microglial cell proliferation in SOD1G93A mice, indicating the importance of CSF1-CSF1R signalling in microgliosis in ALS. Moreover, GW2580 treatment slowed disease progression, attenuated motoneuron cell death and extended survival of SOD1G93A mice. Electrophysiological assessment revealed that GW2580 treatment protected skeletal muscle from denervation prior to its effects on microglial cells. We found that macrophages invaded the peripheral nerve of ALS mice before CSF1R-induced microgliosis occurred. Interestingly, treatment with GW2580 attenuated the influx of macrophages into the nerve, which was partly caused by the monocytopenia induced by CSF1R inhibition. Overall, our findings provide evidence that CSF1R signalling regulates inflammation in the central and peripheral nervous system in ALS, supporting therapeutic targeting of CSF1R in this disease

    Novel Antagonist of the Type 2 Lysophosphatidic Acid Receptor (LPA2), UCM-14216, Ameliorates Spinal Cord Injury in Mice

    Get PDF
    Spinal cord injuries (SCIs) irreversibly disrupt spinal connectivity, leading to permanent neurological disabilities. Current medical treatments for reducing the secondary damage that follows the initial injury are limited to surgical decompression and anti-inflammatory drugs, so there is a pressing need for new therapeutic strategies. Inhibition of the type 2 lysophosphatidic acid receptor (LPA2) has recently emerged as a new potential pharmacological approach to decrease SCIassociated damage. Toward validating this receptor as a target in SCI, we have developed a new series of LPA2 antagonists, among which compound 54 (UCM14216) stands out as a potent and selective LPA2 receptor antagonist (Emax = 90%, IC50 = 1.9 μM, KD = 1.3 nM; inactive at LPA1,3−6 receptors). This compound shows efficacy in an in vivo mouse model of SCI in an LPA2-dependent manner, confirming the potential of LPA2 inhibition for providing a new alternative for treating SCI

    In brief

    No full text

    IL-37 Expression Is Downregulated in Lesional Psoriasis Skin

    No full text
    IL-37 broadly suppresses inflammation in various disease models. However, studies of the regulation and role of IL-37 in psoriasis are limited and contradictive. Using transcriptome analysis, PCR, protein determination, and immunofluorescence, we demonstrated marked downregulation of IL-37 in biopsies from human lesional psoriasis skin compared with paired samples of nonlesional skin. Immunofluorescence analysis showed that IL-37 was localized to stratum granulosum of the epidermis. TNF-α stimulation of normal human epidermal keratinocytes led to increased IL37 expression through a p38 MAPK-mediated mechanism, whereas IL-17A, IL-17C, IL-17F, and IL-22 acted suppressively. Intradermal injection with recombinant human IL-37 into imiquimod-induced psoriasis skin of C57BL/6J mice demonstrated a trend toward a protective effect, however NS. Altogether, these results demonstrate that IL-37 is downregulated in human lesional psoriasis skin. This may be a consequence of the loss of stratum granulosum, but key cytokines in the development of psoriasis also seem to contribute to this downregulation

    Intracellular phospholipase A2 group IVA and group VIA play important roles in Wallerian degeneration and axon regeneration after peripheral nerve injury

    No full text
    We provide evidence that two members of the intracellular phospholipase A2 family, namely calcium-dependent group IVA (cPLA2 GIVA) and calcium-independent group VIA (iPLA2 GVIA) may play important roles in Wallerian degeneration in the mouse sciatic nerve. We assessed the roles of these PLA2s in cPLA2 GIVA-/- mice, and mice treated with a selective inhibitor of iPLA2 GVIA (FKGK11). Additionally, the effects of both these PLA2s were assessed by treating cPLA2 GIVA-/- mice with the iPLA2 inhibitor. Our data suggest that iPLA2 GVIA may play more of a role in the early stages of myelin breakdown, while cPLA2 GIVA may play a greater role in myelin clearance by macrophages. Our results also show that the delayed myelin clearance and Wallerian degeneration after sciatic nerve crush injury in mice lacking cPLA2 and iPLA2 activities is accompanied by a delay in axon regeneration, target re-innervation and functional recovery. These results indicate that the intracellular PLA 2s (cPLA2 GIVA and iPLA2 GVIA) contribute significantly to various aspects of Wallerian degeneration in injured peripheral nerves, which is then essential for successful axon regeneration. This work has implications for injury responses and recovery after peripheral nerve injuries in humans, as well as for understanding the slow clearance of myelin after CNS injury and its potential consequences for axon regeneration. © The Author (2008). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

    Phospholipase A2 superfamily members play divergent roles after spinal cord injury

    No full text
    Spinal cord injury (SCI) results in permanent loss of motor functions. A significant aspect of the tissue damage and functional loss may be preventable as it occurs, secondary to the trauma. We show that the phospholipase A 2 (PLA2) superfamily plays important roles in SCI. PLA2 enzymes hydrolyze membrane glycerophospholipids to yield a free fatty acid and lysophospholipid. Some free fatty acids (arachidonic acid) give rise to eicosanoids that promote inflammation, while some lysophospholipids (lysophosphatidylcholine) cause demyelination. We show in a mouse model of SCI that two cytosolic forms [calcium-dependent PLA2 group IVA (cPLA 2 GIVA) and calcium-independent PLA2 group VIA (iPLA 2 GVIA)], and a secreted form [secreted PLA2group IIA (sPLA2 GIIA)] are up-regulated. Using selective inhibitors and null mice, we show that these PLA2s play differing roles. cPLA2 GIVA mediates protection, whereas sPLA2 GIIA and, to a lesser extent, iPLA2 GVIA are detrimental. Furthermore, completely blocking all three PLA2s worsens outcome, while the most beneficial effects are seen by partial inhibition of all three. The partial inhibitor enhances expression of cPLA2 and mediates its beneficial effects via the prostaglandin EP1 receptor. These findings indicate that drugs that inhibit detrimental forms of PLA2 (sPLA2 and iPLA2) and upregulate the protective form (cPLA2) may be useful for the treatment of SCI. © FASEB

    A Novel Agonist of the Type 1 Lysophosphatidic Acid Receptor (LPA1), UCM-05194, Shows Efficacy in Neuropathic Pain Amelioration.

    No full text
    Neuropathic pain (NP) is a complex chronic pain state with a prevalence of almost 10% in the general population. Pharmacological options for NP are limited and weakly effective, so there is a need to develop more efficacious NP attenuating drugs. Activation of the type 1 lysophosphatidic acid (LPA1) receptor is a crucial factor in the initiation of NP. Hence, it is conceivable that a functional antagonism strategy could lead to NP mitigation. Here we describe a new series of LPA1 agonists among which derivative (S)-17 (UCM-05194) stands out as the most potent and selective LPA1 receptor agonist described so far (Emax = 118%, EC50 = 0.24 μM, KD = 19.6 nM; inactive at autotaxin and LPA2-6 receptors). This compound induces characteristic LPA1-mediated cellular effects and prompts the internalization of the receptor leading to its functional inactivation in primary sensory neurons and to an efficacious attenuation of the pain perception in an in vivo model of NP
    corecore