20 research outputs found
Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries
This is the final version of the article. Available from the publisher via the DOI in this record.Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters.Work in Gabon was financially supported by the Large Pelagics Research Center through National Oceanographic and Atmospheric Agency award no. NA04NMF4550391, the UK Defra Darwin Initiative, the Shellshock Campaign (European Association for Zoos and Aquaria) and the UK Natural Environment Research Council. Sea turtle monitoring programmes in Gabon were financially supported by the Wildlife Conservation Society and by the Gabon Sea Turtle Partnership with funding from the Marine Turtle Conservation Fund (United States Fish and Wildlife Service, US Department of the Interior). Four of the satellite tags were deployed in Canadian waters by M. James (Dalhousie University) and the Canadian Sea Turtle Network, with the funding support of Canadian Sea Turtle Network leatherback field research provided by R. A. Myers, the Canadian Wildlife Federation, Environment Canada and WWF-Canada. Work in French Guiana was financially supported by CNES, DEAL and the European Union.This study results from the collaborative effort of 10 data providers, which have satellite-tracked leatherback turtles in the Atlantic Ocean since 1995, through their voluntary participation in the Trans-Atlantic Leatherback Conservation Initiative (TALCIN), a WWF-led initiative. We thank C. Drews (WWF-International) and Jean-Yves Georges (IPHC-CNRS) for having initiated this project. Significant contributions were made by A. Fonseca and M. L. Felix and the WWF Guianas office in fostering this project to secure its continuation. We thank those involved in the sea turtle restoration plan in French Guiana (DEAL, ONCFS, Kulalasi NGO, Kwata, the Reserve Naturelle de l'Amana, Chiefs of Awala and Yalimapo), Yvon Le Maho (IPHC-CNRS) for having initiated the leatherback tracking programme in French Guiana, colleagues from the Regional Program for Sea Turtles Research and Conservation of ArgentinaâPRICTMA, Aquamarina and FundaciĂłn Mundo Marino, the onboard scientific observers from PNOFA-DINARA, the crew and owner of the F/V Torres del Paine, the artisanal fishermen from KiyĂș, San JosĂ©, Uruguay, D. del Bene (PROFAUMA), Z. Di Rienzo and colleagues from KarumbĂ©, the University of Pisa for initiating the satellite tagging programmes in South Africa, and the South African Department of Environmental Affairs for continuing the work in cooperation with Dr Nel from the Nelson Mandela Metropolitan University, Port Elizabeth and Ezemvelo KZN Wildlife. We thank M. L. Felix for her efforts in the deployment of satellite tags in Suriname and the Nature Conservation Division Suriname for facilitating these research efforts. P.M. thanks C. Palma for his help in dealing with ICCAT's database, C. Ere, as well as the GIS training and support received from SCGIS and the ESRI Conservation Program, which allowed processing of fishing-effort data. We thank J. Parezo for her careful reading of the manuscript. All authors designed the study and contributed data; S.F, M.S.C., P.M. and M.J.W. compiled the data; S.F., M.A.N. and A.L. coordinated and supervised the project; S.F., M.J.W., P.M. and B.J.G. led the data analysis and interpretation with contributions from all authors; the manuscript was developed by S.F. and M.J.W. as lead authors, with contributions from all authors
Atlantic Leatherback Migratory Paths and Temporary Residence Areas
BACKGROUND: Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. METHODOLOGY/PRINCIPAL FINDINGS: Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. CONCLUSIONS/SIGNIFICANCE: Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly influenced by environmental conditions. This high degree of behavioural plasticity in Atlantic leatherback turtles makes species-targeted conservation strategies challenging and stresses the need for a larger dataset (>100 individuals) for providing general recommendations in terms of conservation
Global Conservation Priorities for Marine Turtles
Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a âconservation priorities portfolioâ system using categories of paired risk and threats scores for all RMUs (nâ=â58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa
Pan-atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries
Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters
Morfometria do coração e dos vasos da base e sua implicação no mergulho em Chelonia mydas
Objetivou-se caracterizar a morfologia das cĂąmaras cardĂacas e das artĂ©rias aortas e pulmonares da espĂ©cie Chelonia mydas. Foram avaliados 11 espĂ©cimes de C. mydas mortas coletadas no litoral do estado do Rio Grande do Norte, Brasil. Os animais foram necropsiados para a obtenção do coração, fragmentos das artĂ©rias aorta e pulmonares direita e esquerda. Os vasos adquiridos foram fixados em formol e submetidos ao processamento histolĂłgico de rotina e coloração com TĂ©cnica de Verhoff modificada. Enquanto, do coração, os parĂąmetros largura, altura base-ĂĄpice e a circunferĂȘncia ventricular foram mensurados por meio do paquĂmetro. Nessa espĂ©cie a microscopia das artĂ©rias pulmonares e artĂ©rias aortas variaram de acordo com o antĂmero. A maior espessura relativa do Cavum Venosum (CV) auxilia no bombeamento cardĂaco durante o mergulho e sua menor espessura direita Ă© uma vantagem para a dilatação ventricular durante a imersĂŁo profunda enquanto que a quantificação das lĂąminas elĂĄsticas e fibras musculares da tĂșnica mĂ©dia das artĂ©rias aortas e pulmonares direita e esquerda comprovaram que a tĂșnica mĂ©dia das aortas predomina o componente elĂĄstico vs. muscular, entretanto, nas artĂ©rias pulmonares o componente elĂĄstico nĂŁo-predomina. Essa angioarquitetura pode estar relacionada com a capacidade de mergulho, favorecendo um maior aproveitamento do sangue oxigenado armazenado previamente durante o perĂodo de apneia
Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization
This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the Supplementary Material of this article and Zenodo (https://doi.org/10.5281/zenodo.5898578). Details for all animals included in this study are provided in Appendices S1 and S2. Data used to create the spatial networks are listed in the Appendices S3 and S4. The geospatial files for all networks are available on the Migratory Connectivity in the Ocean Project website (https://mico.eco) and Dryad (https://doi.org/10.5061/dryad.j3tx95xg9). Additional data that support the findings of this study are available from the corresponding author upon reasonable request.Aim
Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts.
Location
Global.
Methods
We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections.
Results
Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links.
Main conclusions
Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.International Climate Initiative (IKI)German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU
Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization
Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Ă
kesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; PerĂș. University of Exeter; Reino Unido. Pro Delphinus; PerĂșFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimĂĄnFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Ăniversitesi; TurquĂa. Ecological Research Society; TurquĂaFil: Casale, Paolo. UniversitĂ degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: GonzĂĄlez Carman, Victoria. Instituto National de InvestigaciĂłn y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; MĂ©xico. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MĂ©xicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. DekamerâSea Turtle Rescue Center; TurquĂa. Pamukkale Ăniversitesi; TurquĂaFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, CĂ©sar P.. Instituto PolitĂ©cnico Nacional; MĂ©xicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: LĂłpez-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. UniversitĂ degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerĂșFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. UniversitĂ Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. FundaciĂłn OceanogrĂ fic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto PolitĂ©cnico Nacional; MĂ©xicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamerâsea Turtle Rescue Center; TurquĂa. Pamukkale University; TurquĂaFil: TomĂĄs, JesĂșs. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MĂ©xicoFil: Halpin, Patrick N.. University of Duke; Estados Unido
Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales
Background: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques - including site-based monitoring, genetic analyses, mark-recapture studies and telemetry - can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine-to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework - including maps and supporting metadata - will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis