27 research outputs found

    Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic Neuropeptide Signaling without Concomitant AMPK Phosphorylation

    Get PDF
    The success of antipsychotic drug treatment in patients with schizophrenia is limited by the propensity of these drugs to induce hyperphagia, weight gain and other metabolic disturbances, particularly evident for olanzapine and clozapine. However, the molecular mechanisms involved in antipsychotic-induced hyperphagia remain unclear. Here, we investigate the effect of olanzapine administration on the regulation of hypothalamic mechanisms controlling food intake, namely neuropeptide expression and AMP-activated protein kinase (AMPK) phosphorylation in rats. Our results show that subchronic exposure to olanzapine upregulates neuropeptide Y (NPY) and agouti related protein (AgRP) and downregulates proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC). This effect was evident both in rats fed ad libitum and in pair-fed rats. Of note, despite weight gain and increased expression of orexigenic neuropeptides, subchronic administration of olanzapine decreased AMPK phosphorylation levels. This reduction in AMPK was not observed after acute administration of either olanzapine or clozapine. Overall, our data suggest that olanzapine-induced hyperphagia is mediated through appropriate changes in hypothalamic neuropeptides, and that this effect does not require concomitant AMPK activation. Our data shed new light on the hypothalamic mechanism underlying antipsychotic-induced hyperphagia and weight gain, and provide the basis for alternative targets to control energy balance

    Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD executive summary

    Get PDF
    This is the final version. Available from American Thoracic Society via the DOI in this record. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) has published the complete 2023 GOLD report, which can be freely downloaded from its web page (www.goldcopd.org) together with a “pocket guide” and a “teaching slide set” (1). It contains important changes compared to earlier versions, and incorporates 387 new references (1). Here, we present an executive summary of this GOLD 2023 report (1) that (1) summarizes aspects that are relevant from a clinician’s perspective and (2) updates evidence published since the prior executive summary in 2017

    Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD executive summary.

    Get PDF
    This is the final version. Available from the European Respiratory Society via the DOI in this record. Executive summary of the Global Strategy for Prevention, Diagnosis and Management of COPD 2023: the latest evidence-based strategy document from the Global Initiative for Chronic Obstructive Lung Disease (GOLD) https://bit.ly/3KCaTG

    Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD executive summary.

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) has published the complete 2023 GOLD report, which can be freely downloaded from its web page (www.goldcopd.org) together with a “pocket guide” and “teaching slide set”.1 It contains important changes compared to earlier versions, and incorporates 387 new references.1 Here, we present an executive summary of this GOLD 2023 report1 that summarizes aspects that (a) are relevant from a clinician's perspective and (b) updates evidence published since the prior executive summary in 2017

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Global strategy for the diagnosis, management, and prevention of Chronic Obstructive Lung Disease: the GOLD Science Committee Report 2019

    Get PDF
    Precision medicine is a patient-specific approach that integrates all relevant clinical, genetic and biological information in order to optimise the therapeutic benefit relative to the possibility of side-effects for each individual. Recent clinical trials have shown that higher blood eosinophil counts are associated with a greater efficacy of inhaled corticosteroids (ICSs) in chronic obstructive pulmonary disease (COPD) patients. Blood eosinophil counts are a biomarker with potential to be used in clinical practice, to help target ICS treatment with more precision in COPD patients with a history of exacerbations despite appropriate bronchodilator treatment.The Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017 pharmacological treatment algorithms, based on the ABCD assessment, can be applied relatively easily to treatment-naive individuals at initial presentation. However, their use is more problematic during follow-up in patients who are already on maintenance treatment. There is a need for a different system to guide COPD pharmacological management during follow-up.Recent large randomised controlled trials have provided important new information concerning the therapeutic effects of ICSs and long-acting bronchodilators on exacerbations. The new evidence regarding blood eosinophils and inhaled treatments, and the need to distinguish between initial and follow-up pharmacological management, led to changes in the GOLD pharmacological treatment recommendations. This article explains the evidence and rationale for the GOLD 2019 pharmacological treatment recommendations.This article is available to read at the publisher's site - click on the Publisher's link above to access it
    corecore