11,130 research outputs found
Estudio cinético de la deshidratación térmica del fosfoyeso
Phsophogypsum is a by-product from the processing phosphate rock. Before the use of it in cement industry such as setting regulator is necessary a study of dehydration reaction of phosphogypsum to avoid the false setting during the milling.
The aim is to study the thermal behavior of two different phosphogypsum sources (Spain and Tunisia) under non-isothermal conditions in argon atmosphere by using Thermo-Gravimetriy, Differential Thermal Analysis (TG-DTA) and Differential Scanning Calorimetry (DSC).
DSC experiments were carried out at temperatures ranging from ambient to 350 °C at different heating rates. The temperatures of conversion from gypsum to hemihydrate and anhydrite states and heat of dehydration were determined. Various methods were used to analyze the DSC data for reaction kinetics determination. The activation energy and frequency factor were calculated for dehydration of phosphogypsum. Activation energy values of the main dehydration reaction of phosphogypsum were calculated to be approximately 61–118 kJ/mol.El fosfoyeso es un subproducto procedente del procesado de la roca fosfato. Una de las posibles vías de reutilización y revalorización es su uso como regulador del fraguado en la industria cementera. Debido a los posibles problemas de falso fraguado asociado a los procesos de deshidratación que tienen lugar durante la molienda del cemento, esta investigación estudió el comportamiento térmico, bajo condiciones no-isotérmicas en atmósfera de argón, de dos fosfoyesos, mediante TG-DTA y DSC.
Los ensayos de DSC se realizaron hasta los 350 °C a diferentes velocidades de calentamiento. La temperatura de conversión del yeso a las formas de hemihidrato y anhidrita y el calor de hidratación fueron determinados.
Las cinéticas de reacción fueron obtenidas analizando los datos de DSC mediante varios métodos. Se calculó la energía de activación y el factor de frecuencia para las reacciones de deshidratación del subproducto. Los valores de energía de activación de las principales reacciones de deshidratación del fosfoyeso fueron obtenidos, aproximadamente 61-118 kJ/mol
Exchange operator formalism for N-body spin models with near-neighbors interactions
We present a detailed analysis of the spin models with near-neighbors
interactions constructed in our previous paper [Phys. Lett. B 605 (2005) 214]
by a suitable generalization of the exchange operator formalism. We provide a
complete description of a certain flag of finite-dimensional spaces of spin
functions preserved by the Hamiltonian of each model. By explicitly
diagonalizing the Hamiltonian in the latter spaces, we compute several infinite
families of eigenfunctions of the above models in closed form in terms of
generalized Laguerre and Jacobi polynomials.Comment: RevTeX, 31 pages, no figures; important additional conten
On the Lebesgue measure of Li-Yorke pairs for interval maps
We investigate the prevalence of Li-Yorke pairs for and
multimodal maps with non-flat critical points. We show that every
measurable scrambled set has zero Lebesgue measure and that all strongly
wandering sets have zero Lebesgue measure, as does the set of pairs of
asymptotic (but not asymptotically periodic) points.
If is topologically mixing and has no Cantor attractor, then typical
(w.r.t. two-dimensional Lebesgue measure) pairs are Li-Yorke; if additionally
admits an absolutely continuous invariant probability measure (acip), then
typical pairs have a dense orbit for . These results make use of
so-called nice neighborhoods of the critical set of general multimodal maps,
and hence uniformly expanding Markov induced maps, the existence of either is
proved in this paper as well.
For the setting where has a Cantor attractor, we present a trichotomy
explaining when the set of Li-Yorke pairs and distal pairs have positive
two-dimensional Lebesgue measure.Comment: 41 pages, 3 figure
Anomalous Roughening in Experiments of Interfaces in Hele-Shaw Flows with Strong Quenched Disorder
We report experimental evidences of anomalous kinetic roughening in the
stable displacement of an oil-air interface in a Hele-Shaw cell with strong
quenched disorder. The disorder consists on a random modulation of the gap
spacing transverse to the growth direction (tracks). We have performed
experiments varying average interface velocity and gap spacing, and measured
the scaling exponents. We have obtained beta=0.50, beta*=0.25, alpha=1.0,
alpha_l=0.5, and z=2. When there is no fluid injection, the interface is driven
solely by capillary forces, and a higher value of beta around beta=0.65 is
measured. The presence of multiscaling and the particular morphology of the
interfaces, characterized by high slopes that follow a L\'evy distribution,
confirms the existence of anomalous scaling. From a detailed study of the
motion of the oil--air interface we show that the anomaly is a consequence of
different local velocities over tracks plus the coupling in the motion between
neighboring tracks. The anomaly disappears at high interface velocities, weak
capillary forces, or when the disorder is not sufficiently persistent in the
growth direction. We have also observed the absence of scaling when the
disorder is very strong or when a regular modulation of the gap spacing is
introduced.Comment: 14 pages, 17 figure
Herschel Far-IR counterparts of SDSS galaxies: Analysis of commonly used Star Formation Rate estimates
We study a hundred of galaxies from the spectroscopic Sloan Digital Sky
Survey with individual detections in the Far-Infrared Herschel PACS bands (100
or 160 m) and in the GALEX Far-UltraViolet band up to z0.4 in the
COSMOS and Lockman Hole fields. The galaxies are divided into 4 spectral and 4
morphological types. For the star forming and unclassifiable galaxies we
calculate dust extinctions from the UV slope, the H/H ratio and
the ratio. There is a tight correlation between the
dust extinction and both and metallicity. We calculate
SFR and compare it with other SFR estimates (H, UV, SDSS)
finding a very good agreement between them with smaller dispersions than
typical SFR uncertainties. We study the effect of mass and metallicity, finding
that it is only significant at high masses for SFR. For the AGN and
composite galaxies we find a tight correlation between SFR and L
(0.29), while the dispersion in the SFR - L relation is
larger (0.57). The galaxies follow the prescriptions of the
Fundamental Plane in the M-Z-SFR space.Comment: 24 pages, 23 figures, accepted for publication in MNRA
Effect of disorder on the vortex-lattice melting transition
We use a three dimensional stacked triangular network of Josephson junctions
as a model for the study of vortex structure in the mixed state of high Tc
superconductors. We show that the addition of disorder destroys the first order
melting transition occurring for clean samples. The melting transition splits
in two different (continuous) transitions, ocurring at temperatures Ti and Tp
(>Ti). At Ti the perpendicular-to-field superconductivity is lost, and at Tp
the parallel-to-field superconductivity is lost. These results agree well with
recent experiments in YBaCuO.Comment: 4 pages + 2 figure
Radiation fluid singular hypersurfaces with de Sitter interior as models of charged extended particles in general relativity
In present paper we construct the classical and minisuperspace quantum models
of an extended charged particle. The modelling is based on the radiation fluid
singular hypersurface filled with physical vacuum. We demonstrate that both at
classical and quantum levels such a model can have equilibrium states at the
radius equal to the classical radius of a charged particle. In the cosmological
context the model could be considered also as the primary stationary state,
having the huge internal energy being nonobservable for an external observer,
from which the Universe was born by virtue of the quantum tunnelling.Comment: LaTeX (IOPP style); final versio
Arabinoxylan-Oligosaccharides act as damage associated molecular patterns in plants regulating disease resistance
Immune responses in plants can be triggered by damage/microbe-associated molecular patterns (DAMPs/MAMPs) upon recognition by plant pattern recognition receptors (PRRs). DAMPs are signaling molecules synthesized by plants or released from host cellular structures (e.g., plant cell walls) upon pathogen infection or wounding. Despite the hypothesized important role of plant cell wall-derived DAMPs in plant-pathogen interactions, a very limited number of these DAMPs are well characterized. Recent work demonstrated that pectin-enriched cell wall fractions extracted from the cell wall mutant impaired in Arabidopsis Response Regulator 6 (arr6), that showed altered disease resistance to several pathogens, triggered more intense immune responses than those activated by similar cell wall fractions from wild-type plants. It was hypothesized that arr6 cell wall fractions could be differentially enriched in DAMPs. In this work, we describe the characterization of the previous immune-active fractions of arr6 showing the highest triggering capacities upon further fractionation by chromatographic means. These analyses pointed to a role of pentose-based oligosaccharides triggering plant immune responses. The characterization of several pentose-based oligosaccharide structures revealed that β-1,4-xylooligosaccharides of specific degrees of polymerization and carrying arabinose decorations are sensed as DAMPs by plants. Moreover, the pentasaccharide 33-α-L-arabinofuranosyl-xylotetraose (XA3XX) was found as a highly active DAMP structure triggering strong immune responses in Arabidopsis thaliana and enhancing crop disease resistance
The phase diagram of high-Tc's: Influence of anisotropy and disorder
We propose a phase diagram for the vortex structure of high temperature
superconductors which incorporates the effects of anisotropy and disorder. It
is based on numerical simulations using the three-dimensional Josephson
junction array model. We support the results with an estimation of the internal
energy and configurational entropy of the system. Our results give a unified
picture of the behavior of the vortex lattice, covering from the very
anysotropic BiSrCaCuO to the less anisotropic YBaCuO, and from the first order
melting ocurring in clean samples to the continuous transitions observed in
samples with defects.Comment: 8 pages with 7 figure
Angular size test on the expansion of the Universe
Assuming the standard cosmological model as correct, the average linear size
of galaxies with the same luminosity is six times smaller at z=3.2 than at z=0,
and their average angular size for a given luminosity is approximately
proportional to 1/z. Neither the hypothesis that galaxies which formed earlier
have much higher densities nor their luminosity evolution, mergers ratio, or
massive outflows due to a quasar feedback mechanism are enough to justify such
a strong size evolution. Also, at high redshift, the intrinsic ultraviolet
surface brightness would be prohibitively high with this evolution, and the
velocity dispersion much higher than observed. We explore here another
possibility to overcome this problem by considering different cosmological
scenarios that might make the observed angular sizes compatible with a weaker
evolution.
One of the models explored, a very simple phenomenological extrapolation of
the linear Hubble law in a Euclidean static universe, fits the angular size vs.
redshift dependence quite well, which is also approximately proportional to 1/z
with this cosmological model. There are no free parameters derived ad hoc,
although the error bars allow a slight size/luminosity evolution. The type Ia
supernovae Hubble diagram can also be explained in terms of this model with no
ad hoc fitted parameter.
WARNING: I do not argue here that the true Universe is static. My intention
is just to discuss which theoretical models provide a better fit to the data of
observational cosmology.Comment: 44 pages, accepted to be published in Int. J. Mod. Phys.
- …