91 research outputs found

    A puzzling solar cell structure: an exercise to get insight on intermediate band solar cells

    Get PDF
    We introduce one trivial but puzzling solar cell structure. It consists of a high bandgap pn junction (top cell) grown on a substrate of lower bandgap. Let us assume, for example, that the bandgap of the top cell is 1.85 eV (Al 0.3Ga 0.7As) and the bandgap of the substrate is 1.42 eV (GaAs). Is the open-circuit of the top cell limited to 1.42 V or to 1.85 V? If the answer is ldquo1.85 Vrdquo we could then make the mind experiment in which we illuminate the cell with 1.5 eV photons (notice these photons would only be absorbed in the substrate). If we admit that these photons can generate photocurrent, then because we have also admitted that the voltage is limited to 1.85 V, it might be possible that the electron-hole pairs generated by these photons were extracted at 1.6 V for example. However, if we do so, the principles of thermodynamics could be violated because we would be extracting more energy from the photon than the energy it initially had. How can we then solve this puzzle

    Optimum single-gap solar cells for missions to Mercury

    Get PDF
    The power supply for space probes is usually based on photovoltaic (PV) systems. The first solar cells used in these systems were single-gap solar cells fabricated with Si and GaAs. Later on, multijunction solar cells (MJSC) based on III–V semiconductors were developed because of their higher efficiency and tolerance to a radiation environment [1]. All these solar cells have been based on semiconductors that fulfill the needs of most near-Earth missions. However, those same semiconductors fail to meet the needs of some other missions involving harsh environments such as high-intensity high-temperature (HIHT) environments [2]. In this work, we investigate which semiconductor material is optimum to implement single-gap solar cells for missions to Mercury, where HIHT conditions are expected. Because solar cell efficiency decreases as temperature increases [3], achieving high-efficiency photovoltaic conversion at HIHT conditions is a big challenge. Previous works have pointed out the need of using wide-bandgap semiconductors to reach this goal [4,5]. In this context, we will study the potential of solar cells based on AlxGa1−xAs, a well-known semiconductor whose physical properties have been extensively investigated. The limiting efficiency of these solar cells performing in near-Mercury missions will be calculated to determine the optimum composition for AlxGa1−xAs

    HIT intermediate-band solar cells with self-assembled colloidal quantum dots and metal nanoparticles

    Full text link
    The particular opto-electronic properties of chemically synthesized colloidal nanoparticles can be promising for functional materials, as those required for high efficient photovoltaic (PV) devices. In particular, appropriately-designed semiconductor colloids (quantum dots, QDs) can potentially allow sub-bandgap current generation in intermediate-band solar cells; while metal nanoparticles (MNPs) sustaining surface plasmons can provide both near and far-field light trapping to further boost the generated power. However, the incorporation of colloidal particles in inorganic PV materials is not trivial, therefore their implementation has so far been restricted to organic/polymeric based solar cells. In this work, PbS colloidal QDs have been incorporated in the intrinsic a-Si:H layer of HIT (substrate/a-Si:H hetero-junction) test structures. Both c-Si and GaAs substrates have been used, and in some cases colloidal Au NPs have also been included. The obtained devices are meant as probes to verify the feasibility of incorporating foreign nanoparticles in a cell structure and not as potentially efficient solar cells. Despite the radical novelties incorporated, the devices behaved similarly to the references, thus proving the compatibility of the proposed materials and processes

    Intermediate Band Solar Cell with Extreme Broadband Spectrum Quantum Efficiency

    Get PDF
    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ~ 6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable

    Voltage limitation analysis in strain-balanced InAs/GaAsN quantum dot solar cells applied to the intermediate band concept

    Get PDF
    Several attempts have been carried out to manufacture intermediate band solar cells (IBSC) by means of quantum dot (QD) superlattices. This novel photovoltaic concept allows the collection of a wider range of the sunlight spectrum in order to provide higher cell photocurrent while maintaining the open-circuit voltage (VOC) of the cell. In this work, we analyze InAs/GaAsN QD-IBSCs. In these cells, the dilute nitrogen in the barrier plays an important role for the strain-balance (SB) of the QD layer region that would otherwise create dislocations under the effect of the accumulated strain. The introduction of GaAsN SB layers allows increasing the light absorption in the QD region by multi-stacking more than 100 QD layers. The photo-generated current density (JL) versus VOC was measured under varied concentrated light intensity and temperature. We found that the VOC of the cell at 20 K is limited by the bandgap of the GaAsN barriers, which has important consequences regarding IBSC bandgap engineering that are also discussed in this work

    Octodon degus: A Model for the Cognitive Impairment Associated with Alzheimer's Disease

    Get PDF
    Octodon degus (O. degus) is a diurnal rodent that spontaneously develops several physiopathological conditions, analogous in many cases to those experienced by humans. In light of this, O. degus has recently been identified as a very valuable animal model for research in several medical fields, especially those concerned with neurodegenerative diseases in which risk is associated with ageing. O. degus spontaneously develops β-amyloid deposits analogous to those observed in some cases of Alzheimer’s disease (AD). Moreover, these deposits are thought to be the key feature for AD diagnosis, and one of the suggested causes of cell loss and cognitive deficit. This review aims to bring together information to support O. degus as a valuable model for the study of cerebral aging

    Intermediate band solar energy conversion in ZnTeO

    Get PDF
    Energy conversion in solar cells incorporating ZnTeO base layers is presented. The ZnTeO base layers incorporate intermediate electronic states located approximately 0.4eV below the conduction band edge as a result of the substitution of O in Te sites in the ZnTe lattice. Cells with ZnTeO base layers demonstrate optical response at energies lower than the ZnTe bandedge, a feature that is absent in reference cells with ZnTe base layers. Quantum efficiency is significantly improved with the incorporation of ZnSe emitter/window layers and transition from growth on GaAs substrates to GaSb substrates with a near lattice match to ZnTe

    Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells

    Full text link
    A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude. In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance. The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells

    Intermediate band to conduction band optical absorption in ZnTeO

    Get PDF
    ZnTe doped with high concentrations of oxygen has been proposed in previous works as an intermediate band (IB) material for photovoltaic applications. The existence of extra optical transitions related to the presence of an IB has already been demonstrated in this material and it has been possible to measure the absorption coefficient of the transitions from the valence band (VB) to the IB. In this study, we present the first measurement of the absorption coefficient associated with transitions from the IB to the conduction band (CB) in ZnTeO. The samples used are 4-mum-thick ZnTe layers with or without O in a concentration ~10 19 cm -3, which have been grown on semiinsulating GaAs substrates by molecular beam epitaxy (MBE). The IB-CB absorption coefficient peaks for photon energies ~0.4 eV. It is extracted from reflectance and transmittance spectra measured using Fourier transform infrared (FTIR) spectroscopy. Under typical FTIR measurement conditions (low light intensity, broadband spectrum), the absorption coefficient in IB-to-CB transitions reaches 700 cm -1. This is much weaker than the one observed for VB-IB absorption. This result is consistent with the fact that the IB is expected to be nearly empty of electrons under equilibrium conditions in ZnTe(O)

    Intermediate Band to Conduction Band optical absorption in ZnTe:O

    Full text link
    ZnTe doped with high concentrations of oxygen has been proposed in previous works as intermediate band (IB) material for photovoltaic applications. The existence of extra optical transitions related to the presence of an IB has already been demonstrated in this material and it has been possible to measure the absorption coefficient of the transitions from the valence band (VB) to the IB. In this work we present the first measurement of the absorption coefficient associated to transitions from the IB to the conduction band (CB) in ZnTe:O. The samples used are 4 ?m thick ZnTe layers with or without O in a concentration ~ 1019 cm-3, which have been grown on semi-insulating GaAs substrates by molecular beam epitaxy (MBE). The IB-CB absorption coefficient peaks for photon energies ~ 0.4 eV. It is extracted from reflectance and transmittance spectra measured using Fourier Transform Infrared (FTIR) spectroscopy. Under typical FTIR measurement conditions (low light intensity, broadband spectrum) the absorption coefficient in IB-to-CB transitions reaches 700 cm-1. This is much weaker than the one observed for VB-IB absorption. This result is consistent with the fact that the IB is expected to be nearly empty of electrons under equilibrium conditions in ZnTe(:O). The absorption for VB to IB transitions is also observed in the same samples through reflectance measurements performed in the visible range using a monochromator. These measurements are compared with the quantum efficiency (QE) from solar cells fabricated under similar conditions
    corecore